This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2013 Benelux, 2

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that \[f(x + y) + y \le f(f(f(x)))\] holds for all $x, y \in \mathbb{R}$.

2017 IMO Shortlist, A3

Tags: function , algebra
Let $S$ be a finite set, and let $\mathcal{A}$ be the set of all functions from $S$ to $S$. Let $f$ be an element of $\mathcal{A}$, and let $T=f(S)$ be the image of $S$ under $f$. Suppose that $f\circ g\circ f\ne g\circ f\circ g$ for every $g$ in $\mathcal{A}$ with $g\ne f$. Show that $f(T)=T$.

2020 Princeton University Math Competition, A4/B6

Tags: algebra
Let $P$ be a $10$-degree monic polynomial with roots $r_1, r_2, . . . , r_{10} \ne $ and let $Q$ be a $45$-degree monic polynomial with roots $\frac{1}{r_i}+\frac{1}{r_j}-\frac{1}{r_ir_j}$ where $i < j$ and $i, j \in \{1, ... , 10\}$. If $P(0) = Q(1) = 2$, then $\log_2 (|P(1)|)$ can be written as $a/b$ for relatively prime integers $a, b$. Find $a + b$.

2020 Iran MO (3rd Round), 4

We call a polynomial $P(x)$ intresting if there are $1398$ distinct positive integers $n_1,...,n_{1398}$ such that $$P(x)=\sum_{}{x^{n_i}}+1$$ Does there exist infinitly many polynomials $P_1(x),P_2(x),...$ such that for each distinct $i,j$ the polynomial $P_i(x)P_j(x)$ is interesting.

2019 Abels Math Contest (Norwegian MO) Final, 3b

Find all real functions $f$ defined on the real numbers except zero, satisfying $f(2019) = 1$ and $f(x)f(y)+ f\left(\frac{2019}{x}\right) f\left(\frac{2019}{y}\right) =2f(xy)$ for all $x,y \ne 0$

2020 ELMO Problems, P5

Let $m$ and $n$ be positive integers. Find the smallest positive integer $s$ for which there exists an $m \times n$ rectangular array of positive integers such that [list] [*]each row contains $n$ distinct consecutive integers in some order, [*]each column contains $m$ distinct consecutive integers in some order, and [*]each entry is less than or equal to $s$. [/list] [i]Proposed by Ankan Bhattacharya.[/i]

2017 All-Russian Olympiad, 7

There is number $N$ on the board. Every minute Ivan makes next operation: takes any number $a$ written on the board, erases it, then writes all divisors of $a$ except $a$( Can be same numbers on the board). After some time on the board there are $N^2$ numbers. For which $N$ is it possible?

2015 Turkey Team Selection Test, 3

Let $m, n$ be positive integers. Let $S(n,m)$ be the number of sequences of length $n$ and consisting of $0$ and $1$ in which there exists a $0$ in any consecutive $m$ digits. Prove that \[S(2015n,n).S(2015m,m)\ge S(2015n,m).S(2015m,n)\]

1985 Putnam, B1

Let $k$ be the smallest positive integer for which there exist distinct integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ such that the polynomial $$p(x)=\left(x-m_{1}\right)\left(x-m_{2}\right)\left(x-m_{3}\right)\left(x-m_{4}\right)\left(x-m_{5}\right)$$ has exactly $k$ nonzero coefficients. Find, with proof, a set of integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ for which this minimum $k$ is achieved.

Kvant 2021, M2663

For every positive integer $m$ prove the inquality $|\{\sqrt{m}\} - \frac{1}{2}| \geq \frac{1}{8(\sqrt m+1)} $ (The integer part $[x]$ of the number $x$ is the largest integer not exceeding $x$. The fractional part of the number $x$ is a number $\{x\}$ such that $[x]+\{x\}=x$.) A. Golovanov

1998 Singapore Team Selection Test, 3

Suppose $f(x)$ is a polynomial with integer coefficients satisfying the condition $0 \le f(c) \le 1997$ for each $c \in \{0, 1, ..., 1998\}$. Is is true that $f(0) = f(1) = ... = f(1998)$? (variation of [url=https://artofproblemsolving.com/community/c6h49788p315649]1997 IMO Shortlist p12[/url])

2010 Benelux, 2

Find all polynomials $p(x)$ with real coeffcients such that \[p(a + b - 2c) + p(b + c - 2a) + p(c + a - 2b) = 3p(a - b) + 3p(b - c) + 3p(c - a)\] for all $a, b, c\in\mathbb{R}$. [i](2nd Benelux Mathematical Olympiad 2010, Problem 2)[/i]

2011 China Northern MO, 1

It is known that the general term $\{a_n\}$ of the sequence is $a_n =(\sqrt3 +\sqrt2)^{2n}$ ($n \in N*$), let $b_n= a_n +\frac{1}{a_n}$ . (1) Find the recurrence relation between $b_{n+2}$, $b_{n+1}$, $b_n$. (2) Find the unit digit of the integer part of $a_{2011}$.

2015 Balkan MO Shortlist, A6

For a polynomials $ P\in \mathbb{R}[x]$, denote $f(P)=n$ if $n$ is the smallest positive integer for which is valid $$(\forall x\in \mathbb{R})(\underbrace{P(P(\ldots P}_{n}(x))\ldots )>0),$$ and $f(P)=0$ if such n doeas not exist. Exists polyomial $P\in \mathbb{R}[x]$ of degree $2014^{2015}$ such that $f(P)=2015$? (Serbia)

2017 Azerbaijan BMO TST, 1

Let $a, b,c$ be positive real numbers. Prove that $ \sqrt{a^3b+a^3c}+\sqrt{b^3c+b^3a}+\sqrt{c^3a+c^3b}\ge \frac43 (ab+bc+ca)$

2005 Alexandru Myller, 3

[b]a)[/b] Find the number of infinite sequences of integers $ \left( a_n \right)_{n\ge 1} $ that have the property that $ a_na_{n+2}a_{n+3}=-1, $ for any natural number $ n. $ [b]b)[/b] Prove that there is no infinite sequence of integers $ \left( b_n \right)_{n\ge 1} $ that have the property that $ b_nb_{n+2}b_{n+3}=2005, $ for any natural number $ n. $

1998 Poland - Second Round, 1

Let $A_n = \{1,2,...,n\}$. Prove or disprove: For all integers $n \ge 2$ there exist functions $f,g : A_n \to A_n$ which satisfy $f(f(k)) = g(g(k)) = k$ for $1 \le k \le n$, and $g(f(k)) = k +1$ for $1 \le k \le n -1$.

2017 Purple Comet Problems, 25

Tags: algebra
Leaving his house at noon, Jim walks at a constant rate of $4$ miles per hour along a $4$ mile square route returning to his house at $1$ PM. At a randomly chosen time between noon and $1$ PM, Sally chooses a random location along Jim's route and begins running at a constant rate of $7$ miles per hour along Jim's route in the same direction that Jim is walking until she completes one $4$ mile circuit of the square route. The probability that Sally runs past Jim while he is walking is given by $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2018 CMIMC Algebra, 3

Tags: algebra
Let $P(x)=x^2+4x+1$. What is the product of all real solutions to the equation $P(P(x))=0$?

2019 Taiwan TST Round 1, 1

Find all functions $ f: \mathbb{R} \to \mathbb{R} $ such that $$ f\left(xf\left(y\right)-f\left(x\right)-y\right) = yf\left(x\right)-f\left(y\right)-x $$ holds for all $ x,y \in \mathbb{R} $

2018 Czech-Polish-Slovak Junior Match, 3

Calculate all real numbers $r $ with the following properties: If real numbers $a, b, c$ satisfy the inequality$ | ax^2 + bx + c | \le 1$ for each $x \in [ - 1, 1]$, then they also satisfy the inequality $| cx^2 + bx + a | \le r$ for each $ x \in [- 1, 1]$.

2014 Abels Math Contest (Norwegian MO) Final, 1b

Find all functions $f : R-\{0\} \to R$ which satisfy $(1 + y)f(x) - (1 + x)f(y) = yf(x/y) - xf(y/x)$ for all real $x, y \ne 0$, and which take the values $f(1) = 32$ and $f(-1) = -4$.

1978 Czech and Slovak Olympiad III A, 6

Show that the number \[p_n=\left(\frac{3+\sqrt5}{2}\right)^n+\left(\frac{3-\sqrt5}{2}\right)^n-2\] is a positive integer for any positive integer $n.$ Furthermore, show that the numbers $p_{2n-1}$ and $p_{2n}/5$ are perfect squares $($for any positive integer $n).$

2004 Romania National Olympiad, 2

Let $f \in \mathbb Z[X]$. For an $n \in \mathbb N$, $n \geq 2$, we define $f_n : \mathbb Z / n \mathbb Z \to \mathbb Z / n \mathbb Z$ through $f_n \left( \widehat x \right) = \widehat{f \left( x \right)}$, for all $x \in \mathbb Z$. (a) Prove that $f_n$ is well defined. (b) Find all polynomials $f \in \mathbb Z[X]$ such that for all $n \in \mathbb N$, $n \geq 2$, the function $f_n$ is surjective. [i]Bogdan Enescu[/i]

2012 Brazil Team Selection Test, 1

Let $\phi = \frac{1+\sqrt5}{2}$. Prove that a positive integer appears in the list $$\lfloor \phi \rfloor , \lfloor 2 \phi \rfloor, \lfloor 3\phi \rfloor ,... , \lfloor n\phi \rfloor , ... $$ if and only if it appears exactly twice in the list $$\lfloor 1/ \phi \rfloor , \lfloor 2/ \phi \rfloor, \lfloor 3/\phi \rfloor , ... ,\lfloor n/\phi \rfloor , ... $$