This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 27

2012 Indonesia TST, 1

The sequence $a_i$ is defined as $a_1 = 2, a_2 = 3$, and $a_{n+1} = 2a_{n-1}$ or $a_{n+1} = 3a_n - 2a_{n-1}$ for all integers $n \ge 2$. Prove that no term in $a_i$ is in the range $[1612, 2012]$.

2003 Poland - Second Round, 6

Each pair $(x, y)$ of nonnegative integers is assigned number $f(x, y)$ according the conditions: $f(0, 0) = 0$; $f(2x, 2y) = f(2x + 1, 2y + 1) = f(x, y)$, $f(2x + 1, 2y) = f(2x, 2y + 1) = f(x ,y) + 1$ for $x, y \ge 0$. Let $n$ be a fixed nonnegative integer and let $a$, $b$ be nonnegative integers such that $f(a, b) = n$. Decide how many numbers satisfy the equation $f(a, x) + f(b, x) = n$.