This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 27

2024 Dutch IMO TST, 3

Player Zero and Player One play a game on a $n \times n$ board ($n \ge 1$). The columns of this $n \times n$ board are numbered $1,2,4,\dots,2^{n-1}$. Turn my turn, the players put their own number in one of the free cells (thus Player Zero puts a $0$ and Player One puts a $1$). Player Zero begins. When the board is filled, the game ends and each row yields a (reverse binary) number obtained by adding the values of the columns with a $1$ in that row. For instance, when $n=4$, a row with $0101$ yields the number $0 \cdot1+1 \cdot 2+0 \cdot 4+1 \cdot 8=10$. a) For which natural numbers $n$ can Player One always ensure that at least one of the row numbers is divisible by $4$? b) For which natural numbers $n$ can Player One always ensure that at least one of the row numbers is divisible by $3$?

1990 IMO Longlists, 18

Find, with proof, the least positive integer $n$ having the following property: in the binary representation of $\frac 1n$, all the binary representations of $1, 2, \ldots, 1990$ (each consist of consecutive digits) are appeared after the decimal point.