This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 70

2017 Korea Winter Program Practice Test, 2

There are $m \ge 2$ blue points and $n \ge 2$ red points in three-dimensional space, and no four points are coplanar. Geoff and Nazar take turns, picking one blue point and one red point and connecting the two with a straight-line segment. Assume that Geoff starts first and the one who first makes a cycle wins. Who has the winning strategy?

2014 BAMO, 3

Amy and Bob play a game. They alternate turns, with Amy going first. At the start of the game, there are $20$ cookies on a red plate and $14$ on a blue plate. A legal move consists of eating two cookies taken from one plate, or moving one cookie from the red plate to the blue plate (but never from the blue plate to the red plate). The last player to make a legal move wins; in other words, if it is your turn and you cannot make a legal move, you lose, and the other player has won. Which player can guarantee that they win no matter what strategy their opponent chooses? Prove that your answer is correct.

2021 Israel TST, 1

Ayala and Barvaz play a game: Ayala initially gives Barvaz two $100\times100$ tables of positive integers, such that the product of numbers in each table is the same. In one move, Barvaz may choose a row or column in one of the tables, and change the numbers in it (to some positive integers), as long as the total product remains the same. Barvaz wins if after $N$ such moves, he manages to make the two tables equal to each other, and otherwise Ayala wins. a. For which values of $N$ does Barvaz have a winning strategy? b. For which values of $N$ does Barvaz have a winning strategy, if all numbers in Ayalah’s tables must be powers of $2$?

2019 ELMO Problems, 3

Let $n \ge 3$ be a fixed integer. A game is played by $n$ players sitting in a circle. Initially, each player draws three cards from a shuffled deck of $3n$ cards numbered $1, 2, \dots, 3n$. Then, on each turn, every player simultaneously passes the smallest-numbered card in their hand one place clockwise and the largest-numbered card in their hand one place counterclockwise, while keeping the middle card. Let $T_r$ denote the configuration after $r$ turns (so $T_0$ is the initial configuration). Show that $T_r$ is eventually periodic with period $n$, and find the smallest integer $m$ for which, regardless of the initial configuration, $T_m=T_{m+n}$. [i]Proposed by Carl Schildkraut and Colin Tang[/i]

2001 Saint Petersburg Mathematical Olympiad, 9.1

All the cells of a $10\times10$ board are colored white initially. Two players are playing a game with alternating moves. A move consists of coloring any un-colored cell black. A player is considered to loose, if after his move no white domino is left. Which of the players has a winning strategy? [I]Proposed by A. Khrabrov[/i]

2024 Tuymaada Olympiad, 2

Chip and Dale play on a $100 \times 100$ table. In the beginning, a chess king stands in the upper left corner of the table. At each move the king is moved one square right, down or right-down diagonally. A player cannot move in the direction used by his opponent in the previous move. The players move in turn, Chip begins. The player that cannot move loses. Which player has a winning strategy?

2019 Kosovo Team Selection Test, 1

There are 2019 cards in a box. Each card has a number written on one of its sides and a letter on the other side. Amy and Ben play the following game: in the beginning Amy takes all the cards, places them on a line and then she flips as many cards as she wishes. Each time Ben touches a card he has to flip it and its neighboring cards. Ben is allowed to have as many as 2019 touches. Ben wins if all the cards are on the numbers' side, otherwise Amy wins. Determine who has a winning strategy.

2019 ELMO Shortlist, C4

Let $n \ge 3$ be a fixed integer. A game is played by $n$ players sitting in a circle. Initially, each player draws three cards from a shuffled deck of $3n$ cards numbered $1, 2, \dots, 3n$. Then, on each turn, every player simultaneously passes the smallest-numbered card in their hand one place clockwise and the largest-numbered card in their hand one place counterclockwise, while keeping the middle card. Let $T_r$ denote the configuration after $r$ turns (so $T_0$ is the initial configuration). Show that $T_r$ is eventually periodic with period $n$, and find the smallest integer $m$ for which, regardless of the initial configuration, $T_m=T_{m+n}$. [i]Proposed by Carl Schildkraut and Colin Tang[/i]

1998 Brazil National Olympiad, 3

Two players play a game as follows: there $n > 1$ rounds and $d \geq 1$ is fixed. In the first round A picks a positive integer $m_1$, then B picks a positive integer $n_1 \not = m_1$. In round $k$ (for $k = 2, \ldots , n$), A picks an integer $m_k$ such that $m_{k-1} < m_k \leq m_{k-1} + d$. Then B picks an integer $n_k$ such that $n_{k-1} < n_k \leq n_{k-1} + d$. A gets $\gcd(m_k,n_{k-1})$ points and B gets $\gcd(m_k,n_k)$ points. After $n$ rounds, A wins if he has at least as many points as B, otherwise he loses. For each $(n, d)$ which player has a winning strategy?

2021 Israel TST, 3

A game is played on a $n \times n$ chessboard. In the beginning Bars the cat occupies any cell according to his choice. The $d$ sparrows land on certain cells according to their choice (several sparrows may land in the same cell). Bars and the sparrows play in turns. In each turn of Bars, he moves to a cell adjacent by a side or a vertex (like a king in chess). In each turn of the sparrows, precisely one of the sparrows flies from its current cell to any other cell of his choice. The goal of Bars is to get to a cell containing a sparrow. Can Bars achieve his goal a) if $d=\lfloor \frac{3\cdot n^2}{25}\rfloor$, assuming $n$ is large enough? b) if $d=\lfloor \frac{3\cdot n^2}{19}\rfloor$, assuming $n$ is large enough? c) if $d=\lfloor \frac{3\cdot n^2}{14}\rfloor$, assuming $n$ is large enough?

2019 ELMO Shortlist, C2

Adithya and Bill are playing a game on a connected graph with $n > 2$ vertices, two of which are labeled $A$ and $B$, so that $A$ and $B$ are distinct and non-adjacent and known to both players. Adithya starts on vertex $A$ and Bill starts on $B$. Each turn, both players move simultaneously: Bill moves to an adjacent vertex, while Adithya may either move to an adjacent vertex or stay at his current vertex. Adithya loses if he is on the same vertex as Bill, and wins if he reaches $B$ alone. Adithya cannot see where Bill is, but Bill can see where Adithya is. Given that Adithya has a winning strategy, what is the maximum possible number of edges the graph may have? (Your answer may be in terms of $n$.) [i]Proposed by Steven Liu[/i]

2025 Bangladesh Mathematical Olympiad, P5

Mugdho and Dipto play a game on a numbered row of $n \geq 5$ squares. At the beginning, a pebble is put on the first square and then the players make consecutive moves; Mugdho starts. During a move a player is allowed to choose one of the following: [list] [*] move the pebble one square rightward [*] move the pebble four squares rightward [*] move the pebble two squares leftward [/list] All of the possible moves are only allowed if the pebble stays within the borders of the square row. The player who moves the pebble to the last square (a. k. a $n$-th) wins. Determine for which values of $n$ each of the players has a winning strategy.

2020 Kosovo National Mathematical Olympiad, 1

Two players, Agon and Besa, choose a number from the set $\{1,2,3,4,5,6,7,8\}$, in turns, until no number is left. Then, each player sums all the numbers that he has chosen. We say that a player wins if the sum of his chosen numbers is a prime and the sum of the numbers that his opponent has chosen is composite. In the contrary, the game ends in a draw. Agon starts first. Does there exist a winning strategy for any of the players?

2015 Baltic Way, 6

Two players play the following game. At the outset there are two piles, containing $10,000$ and $20,000$ tokens,respectively . A move consists of removing any positive number of tokens from a single pile $or$ removing $x>0$ tokens from one pile and $y>0$ tokens from the other , where $x+y$ is divisible by $2015$. The player who can not make a move loses. Which player has a winning strategy

2019 Canada National Olympiad, 5

A 2-player game is played on $n\geq 3$ points, where no 3 points are collinear. Each move consists of selecting 2 of the points and drawing a new line segment connecting them. The first player to draw a line segment that creates an odd cycle loses. (An odd cycle must have all its vertices among the $n$ points from the start, so the vertices of the cycle cannot be the intersections of the lines drawn.) Find all $n$ such that the player to move first wins.

2019 IMO Shortlist, C7

There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game. In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps: (a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$. (b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group. Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning. [i]Czech Republic[/i]

2020 Bundeswettbewerb Mathematik, 1

Leo and Smilla find $2020$ gold nuggets with masses $1,2,\dots,2020$ gram, which they distribute to a red and a blue treasure chest according to the following rule: First, Leo chooses one of the chests and tells its colour to Smilla. Then Smilla chooses one of the not yet distributed nuggets and puts it into this chest. This is repeated until all the nuggets are distributed. Finally, Smilla chooses one of the chests and wins all the nuggets from this chest. How many gram of gold can Smilla make sure to win?

2019 ELMO Shortlist, C2

Adithya and Bill are playing a game on a connected graph with $n > 2$ vertices, two of which are labeled $A$ and $B$, so that $A$ and $B$ are distinct and non-adjacent and known to both players. Adithya starts on vertex $A$ and Bill starts on $B$. Each turn, both players move simultaneously: Bill moves to an adjacent vertex, while Adithya may either move to an adjacent vertex or stay at his current vertex. Adithya loses if he is on the same vertex as Bill, and wins if he reaches $B$ alone. Adithya cannot see where Bill is, but Bill can see where Adithya is. Given that Adithya has a winning strategy, what is the maximum possible number of edges the graph may have? (Your answer may be in terms of $n$.) [i]Proposed by Steven Liu[/i]

2019 ELMO Shortlist, C4

Let $n \ge 3$ be a fixed integer. A game is played by $n$ players sitting in a circle. Initially, each player draws three cards from a shuffled deck of $3n$ cards numbered $1, 2, \dots, 3n$. Then, on each turn, every player simultaneously passes the smallest-numbered card in their hand one place clockwise and the largest-numbered card in their hand one place counterclockwise, while keeping the middle card. Let $T_r$ denote the configuration after $r$ turns (so $T_0$ is the initial configuration). Show that $T_r$ is eventually periodic with period $n$, and find the smallest integer $m$ for which, regardless of the initial configuration, $T_m=T_{m+n}$. [i]Proposed by Carl Schildkraut and Colin Tang[/i]

2016 Iran MO (3rd Round), 2

A $100 \times 100$ table is given. At the beginning, every unit square has number $"0"$ written in them. Two players playing a game and the game stops after $200$ steps (each player plays $100$ steps). In every step, one can choose a row or a column and add $1$ to the written number in all of it's squares $\pmod 3.$ First player is the winner if more than half of the squares ($5000$ squares) have the number $"1"$ written in them, Second player is the winner if more than half of the squares ($5000$ squares) have the number $"0"$ written in them. Otherwise, the game is draw. Assume that both players play at their best. What will be the result of the game ? [i]Proposed by Mahyar Sefidgaran[/i]

2020 Caucasus Mathematical Olympiad, 8

Peter wrote $100$ distinct integers on a board. Basil needs to fill the cells of a table $100\times{100}$ with integers so that the sum in each rectangle $1\times{3}$ (either vertical, or horizontal) is equal to one of the numbers written on the board. Find the greatest $n$ such that, regardless of numbers written by Peter, Basil can fill the table so that it would contain each of numbers $(1,2,...,n)$ at least once (and possibly some other integers).

2020 China Northern MO, P4

Two students $A$ and $B$ play a game on a $20 \text{ x } 20$ chessboard. It is known that two squares are said to be [i]adjacent[/i] if the two squares have a common side. At the beginning, there is a chess piece in a certain square of the chessboard. Given that $A$ will be the first one to move the chess piece, $A$ and $B$ will alternately move this chess piece to an adjacent square. Also, the common side of any pair of adjacent squares can only be passed once. If the opponent cannot move anymore, then he will be declared the winner (to clarify since the wording wasn’t that good, you lose if you can’t move). Who among $A$ and $B$ has a winning strategy? Justify your claim.

JOM 2015 Shortlist, C7

Navi and Ozna are playing a game where Ozna starts first and the two take turn making moves. A positive integer is written on the waord. A move is to (i) subtract any positive integer at most 2015 from it or (ii) given that the integer on the board is divisible by $2014$, divide by $2014$. The first person to make the integer $0$ wins. To make Navi's condition worse, Ozna gets to pick integers $a$ and $b$, $a\ge 2015$ such that all numbers of the form $an+b$ will not be the starting integer, where $n$ is any positive integer. Find the minimum number of starting integer where Navi wins.

2020 Taiwan TST Round 1, 6

There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game. In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps: (a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$. (b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group. Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning. [i]Czech Republic[/i]

2017 Australian MO, 3

Anna and Berta play a game in which they take turns in removing marbles from a table. Anna takes the first turn. When at the beginning of the turn there are $n\geq 1$ marbles on the table, then the player whose turn it is removes $k$ marbles, where $k\geq 1$ either is an even number with $k\leq \frac{n}{2}$ or an odd number with $\frac{n}{2}\leq k\leq n$. A player win the game if she removes the last marble from the table. Determine the smallest number $N\geq 100000$ such that Berta can enforce a victory if there are exactly $N$ marbles on the tale in the beginning.