This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 128

2013 Saudi Arabia BMO TST, 2

The base-$7$ representation of number $n$ is $\overline{abc}_{(7)}$, and the base-$9$ representation of number $n$ is $\overline{cba}_{(9)}$. What is the decimal (base-$10$) representation of $n$?

2023 Romanian Master of Mathematics Shortlist, N2

For every non-negative integer $k$ let $S(k)$ denote the sum of decimal digits of $k$. Let $P(x)$ and $Q(x)$ be polynomials with non-negative integer coecients such that $S(P(n)) = S(Q(n))$ for all non-negative integers $n$. Prove that there exists an integer $t$ such that $P(x) - 10^tQ(x)$ is a constant polynomial.

1975 IMO Shortlist, 5

Let $M$ be the set of all positive integers that do not contain the digit $9$ (base $10$). If $x_1, \ldots , x_n$ are arbitrary but distinct elements in $M$, prove that \[\sum_{j=1}^n \frac{1}{x_j} < 80 .\]

2004 IMO, 6

We call a positive integer [i]alternating[/i] if every two consecutive digits in its decimal representation are of different parity. Find all positive integers $n$ such that $n$ has a multiple which is alternating.

1990 IMO Shortlist, 20

Prove that every integer $ k$ greater than 1 has a multiple that is less than $ k^4$ and can be written in the decimal system with at most four different digits.

1960 IMO Shortlist, 1

Determine all three-digit numbers $N$ having the property that $N$ is divisible by 11, and $\dfrac{N}{11}$ is equal to the sum of the squares of the digits of $N$.

2011 Junior Balkan Team Selection Tests - Romania, 1

Call a positive integer [i]balanced [/i] if the number of its distinct prime factors is equal to the number of its digits in the decimal representation; for example, the number $385 = 5 \cdot 7 \cdot 11$ is balanced, while $275 = 5^2 \cdot 11$ is not. Prove that there exist only a finite number of balanced numbers.

2018 Federal Competition For Advanced Students, P1, 3

Alice and Bob determine a number with $2018$ digits in the decimal system by choosing digits from left to right. Alice starts and then they each choose a digit in turn. They have to observe the rule that each digit must differ from the previously chosen digit modulo $3$. Since Bob will make the last move, he bets that he can make sure that the final number is divisible by $3$. Can Alice avoid that? [i](Proposed by Richard Henner)[/i]

2003 Junior Balkan Team Selection Tests - Romania, 2

Let $a$ be a positive integer such that the number $a^n$ has an odd number of digits in the decimal representation for all $n > 0$. Prove that the number $a$ is an even power of $10$.

2013 IMO Shortlist, N4

Determine whether there exists an infinite sequence of nonzero digits $a_1 , a_2 , a_3 , \cdots $ and a positive integer $N$ such that for every integer $k > N$, the number $\overline{a_k a_{k-1}\cdots a_1 }$ is a perfect square.

1975 IMO, 4

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

1984 Spain Mathematical Olympiad, 7

Consider the natural numbers written in the decimal system. (a) Find the smallest number which decreases five times when its first digit is erased. Which form do all numbers with this property have? (b) Prove that there is no number that decreases $12$ times when its first digit is erased. (c) Find the necessary and sufficient condition on $k$ for the existence of a natural number which is divided by $k$ when its first digit is erased.

2003 IMO Shortlist, 4

Let $ b$ be an integer greater than $ 5$. For each positive integer $ n$, consider the number \[ x_n = \underbrace{11\cdots1}_{n \minus{} 1}\underbrace{22\cdots2}_{n}5, \] written in base $ b$. Prove that the following condition holds if and only if $ b \equal{} 10$: [i]there exists a positive integer $ M$ such that for any integer $ n$ greater than $ M$, the number $ x_n$ is a perfect square.[/i] [i]Proposed by Laurentiu Panaitopol, Romania[/i]

1966 IMO Shortlist, 12

Find digits $x, y, z$ such that the equality \[\sqrt{\underbrace{\overline{xx\cdots x}}_{2n \text{ times}}-\underbrace{\overline{yy\cdots y}}_{n \text{ times}}}=\underbrace{\overline{zz\cdots z}}_{n \text{ times}}\] holds for at least two values of $n \in \mathbb N$, and in that case find all $n$ for which this equality is true.

2007 Germany Team Selection Test, 3

For $ x \in (0, 1)$ let $ y \in (0, 1)$ be the number whose $ n$-th digit after the decimal point is the $ 2^{n}$-th digit after the decimal point of $ x$. Show that if $ x$ is rational then so is $ y$. [i]Proposed by J.P. Grossman, Canada[/i]

1980 IMO, 3

Find the digits left and right of the decimal point in the decimal form of the number \[ (\sqrt{2} + \sqrt{3})^{1980}. \]

1969 IMO Shortlist, 40

$(MON 1)$ Find the number of five-digit numbers with the following properties: there are two pairs of digits such that digits from each pair are equal and are next to each other, digits from different pairs are different, and the remaining digit (which does not belong to any of the pairs) is different from the other digits.

1981 Tournament Of Towns, (013) 3

Prove that every real positive number may be represented as a sum of nine numbers whose decimal representation consists of the digits $0$ and $7$. (E Turkevich)

2014 Belarus Team Selection Test, 3

Determine whether there exists an infinite sequence of nonzero digits $a_1 , a_2 , a_3 , \cdots $ and a positive integer $N$ such that for every integer $k > N$, the number $\overline{a_k a_{k-1}\cdots a_1 }$ is a perfect square.

2015 Balkan MO Shortlist, N7

Positive integer $m$ shall be called [i]anagram [/i] of positive $n$ if every digit $a$ appears as many times in the decimal representation of $m$ as it appears in the decimal representation of $n$ also. Is it possible to find $4$ different positive integers such that each of the four to be [i]anagram [/i] of the sum of the other $3$? (Bulgaria)

2001 Switzerland Team Selection Test, 5

Let $a_1 < a_2 < ... < a_n$ be a sequence of natural numbers such that for $i < j$ the decimal representation of $a_i$ does not occur as the leftmost digits of the decimal representation of $a_j$ . (For example, $137$ and $13729$ cannot both occur in the sequence.) Prove that $\sum_{i=1}^n \frac{1}{a_i} \le 1+\frac12 +\frac13 +...+\frac19$ .

1967 IMO Longlists, 1

Prove that all numbers of the sequence \[ \frac{107811}{3}, \quad \frac{110778111}{3}, \frac{111077781111}{3}, \quad \ldots \] are exact cubes.

1986 China Team Selection Test, 3

Given a positive integer $A$ written in decimal expansion: $(a_{n},a_{n-1}, \ldots, a_{0})$ and let $f(A)$ denote $\sum^{n}_{k=0} 2^{n-k}\cdot a_k$. Define $A_1=f(A), A_2=f(A_1)$. Prove that: [b]I.[/b] There exists positive integer $k$ for which $A_{k+1}=A_k$. [b]II.[/b] Find such $A_k$ for $19^{86}.$

1983 IMO Shortlist, 24

Let $d_n$ be the last nonzero digit of the decimal representation of $n!$. Prove that $d_n$ is aperiodic; that is, there do not exist $T$ and $n_0$ such that for all $n \geq n_0, d_{n+T} = d_n.$

2000 Belarus Team Selection Test, 5.2

Let $n,k$ be positive integers such that n is not divisible by 3 and $k \geq n$. Prove that there exists a positive integer $m$ which is divisible by $n$ and the sum of its digits in decimal representation is $k$.