This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 545

2023 Bulgaria JBMO TST, 2

Determine the smallest positive integer $n\geq 2$ for which there exists a positive integer $m$ such that $mn$ divides $m^{2023} + n^{2023} + n$.

1999 IMO Shortlist, 7

Let $p >3$ be a prime number. For each nonempty subset $T$ of $\{0,1,2,3, \ldots , p-1\}$, let $E(T)$ be the set of all $(p-1)$-tuples $(x_1, \ldots ,x_{p-1} )$, where each $x_i \in T$ and $x_1+2x_2+ \ldots + (p-1)x_{p-1}$ is divisible by $p$ and let $|E(T)|$ denote the number of elements in $E(T)$. Prove that \[|E(\{0,1,3\})| \geq |E(\{0,1,2\})|\] with equality if and only if $p = 5$.

2020 Macedonia Additional BMO TST, 3

Does there exist a set of $2020$ distinct positive whole numbers with the property that the product of any $101$ of them is divisible by the sum of those $101$ numbers?

1968 IMO Shortlist, 21

Let $a_0, a_1, \ldots , a_k \ (k \geq 1)$ be positive integers. Find all positive integers $y$ such that \[a_0 | y, (a_0 + a_1) | (y + a1), \ldots , (a_0 + a_n) | (y + a_n).\]

2016 Bangladesh Mathematical Olympiad, 2

(a) How many positive integer factors does $6000$ have? (b) How many positive integer factors of $6000$ are not perfect squares?

2000 Moldova National Olympiad, Problem 1

Let $1=d_1<d_2<\ldots<d_{2m}=n$ be the divisors of a positive integer $n$, where $n$ is not a perfect square. Consider the determinant $$D=\begin{vmatrix}n+d_1&n&\ldots&n\\n&n+d_2&\ldots&n\\\ldots&\ldots&&\ldots\\n&n&\ldots&n+d_{2m}\end{vmatrix}.$$ (a) Prove that $n^m$ divides $D$. (b) Prove that $1+d_1+d_2+\ldots+d_{2m}$ divides $D$.

2017 Germany Team Selection Test, 3

Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2009 Serbia Team Selection Test, 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

1999 IMO Shortlist, 3

Prove that there exists two strictly increasing sequences $(a_{n})$ and $(b_{n})$ such that $a_{n}(a_{n}+1)$ divides $b^{2}_{n}+1$ for every natural n.

1998 IMO Shortlist, 3

Determine the smallest integer $n\geq 4$ for which one can choose four different numbers $a,b,c$ and $d$ from any $n$ distinct integers such that $a+b-c-d$ is divisible by $20$.

2023 Grosman Mathematical Olympiad, 1

An arithmetic progression of natural numbers of length $10$ and with difference $11$ is given. Prove that the product of the numbers in this progression is divisible by $10!$.

2023 Ukraine National Mathematical Olympiad, 9.2

Positive integers $a_1, a_2, \ldots, a_{101}$ are such that $a_i+1$ is divisible by $a_{i+1}$ for all $1 \le i \le 101$, where $a_{102} = a_1$. What is the largest possible value of $\max(a_1, a_2, \ldots, a_{101})$? [i]Proposed by Oleksiy Masalitin[/i]

2010 Belarus Team Selection Test, 3.2

Prove that there exists a positive integer $n$ such that $n^6 + 31n^4 - 900\vdots 2009 \cdot 2010 \cdot 2011$. (I. Losev, I. Voronovich)

1993 Mexico National Olympiad, 6

$p$ is an odd prime. Show that $p$ divides $n(n+1)(n+2)(n+3) + 1$ for some integer $n$ iff $p$ divides $m^2 - 5$ for some integer $m$.

2015 Danube Mathematical Competition, 3

Tags: divisibility , rmn
Determine all positive integers $n$ such that all positive integers less than or equal to $n$ and relatively prime to $n$ are pairwise coprime.

Russian TST 2016, P1

Let $a{}$ and $b{}$ be natural numbers greater than one. Let $n{}$ be a natural number for which $a\mid 2^n-1$ and $b\mid 2^n+1$. Prove that there is no natural $k{}$ such that $a\mid 2^k+1$ and $b\mid 2^k-1$.

2021 Bolivian Cono Sur TST, 1

Find the sum of all positive integers $n$ such that $$\frac{n+11}{\sqrt{n-1}}$$ is an integer.

2016 IMO Shortlist, N6

Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2006 Taiwan TST Round 1, 3

Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$. [i]Proposed by Mohsen Jamali, Iran[/i]

1969 IMO Shortlist, 25

$(GBR 2)$ Let $a, b, x, y$ be positive integers such that $a$ and $b$ have no common divisor greater than $1$. Prove that the largest number not expressible in the form $ax + by$ is $ab - a - b$. If $N(k)$ is the largest number not expressible in the form $ax + by$ in only $k$ ways, find $N(k).$

1969 Bulgaria National Olympiad, Problem 1

Prove that if the sum of $x^5,y^5$ and $z^5$, where $x,y$ and $z$ are integer numbers, is divisible by $25$ then the sum of some two of them is divisible by $25$.

2011 Brazil Team Selection Test, 4

Let $a, b$ be integers, and let $P(x) = ax^3+bx.$ For any positive integer $n$ we say that the pair $(a,b)$ is $n$-good if $n | P(m)-P(k)$ implies $n | m - k$ for all integers $m, k.$ We say that $(a,b)$ is $very \ good$ if $(a,b)$ is $n$-good for infinitely many positive integers $n.$ [list][*][b](a)[/b] Find a pair $(a,b)$ which is 51-good, but not very good. [*][b](b)[/b] Show that all 2010-good pairs are very good.[/list] [i]Proposed by Okan Tekman, Turkey[/i]

2018 Brazil Team Selection Test, 3

Let $n > 10$ be an odd integer. Determine the number of ways to place the numbers $1, 2, \ldots , n$ around a circle so that each number in the circle divides the sum its two neighbors. (Two configurations such that one can be obtained from the other per rotation are to be counted only once.)

1999 Romania Team Selection Test, 10

Determine all positive integers $n$ for which there exists an integer $m$ such that ${2^{n}-1}$ is a divisor of ${m^{2}+9}$.

2022 Olimphíada, 1

Let $p,q$ prime numbers such that $$p+q \mid p^3-q^3$$ Show that $p=q$.