This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 545

Russian TST 2014, P1

Let $p{}$ be a prime number and $x_1,x_2,\ldots,x_p$ be integers for which $x_1^n+x_2^n+\cdots+x_p^n$ is divisible by $p{}$ for any positive integer $n{}$. Prove that $x_1-x_2$ is divisible by $p{}.$

1966 IMO Longlists, 42

Given a finite sequence of integers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ for $n\geq 2.$ Show that there exists a subsequence $a_{k_{1}},$ $a_{k_{2}},$ $...,$ $a_{k_{m}},$ where $1\leq k_{1}\leq k_{2}\leq...\leq k_{m}\leq n,$ such that the number $a_{k_{1}}^{2}+a_{k_{2}}^{2}+...+a_{k_{m}}^{2}$ is divisible by $n.$ [b]Note by Darij:[/b] Of course, the $1\leq k_{1}\leq k_{2}\leq ...\leq k_{m}\leq n$ should be understood as $1\leq k_{1}<k_{2}<...<k_{m}\leq n;$ else, we could take $m=n$ and $k_{1}=k_{2}=...=k_{m},$ so that the number $a_{k_{1}}^{2}+a_{k_{2}}^{2}+...+a_{k_{m}}^{2}=n^{2}a_{k_{1}}^{2}$ will surely be divisible by $n.$

2016 Taiwan TST Round 2, 1

Let $a$ and $b$ be positive integers such that $a! + b!$ divides $a!b!$. Prove that $3a \ge 2b + 2$.

2004 Switzerland Team Selection Test, 8

Let $m$ be a fixed integer greater than $1$. The sequence $x_0$, $x_1$, $x_2$, $\ldots$ is defined as follows: \[x_i = \begin{cases}2^i&\text{if }0\leq i \leq m - 1;\\\sum_{j=1}^mx_{i-j}&\text{if }i\geq m.\end{cases}\] Find the greatest $k$ for which the sequence contains $k$ consecutive terms divisible by $m$ . [i]Proposed by Marcin Kuczma, Poland[/i]

Dumbest FE I ever created, 1.

Determine all functions $f\colon\mathbb{Z}_{>0}\to\mathbb{Z}_{>0}$ such that, for all positive integers $m$ and $n$, $$ m^{\phi(n)}+n^{\phi(m)} \mid f(m)^n + f(n)^m$$

2019 ELMO Shortlist, N4

A positive integer $b$ and a sequence $a_0,a_1,a_2,\dots$ of integers $0\le a_i<b$ is given. It is known that $a_0\neq 0$ and the sequence $\{a_i\}$ is eventually periodic but has infinitely many nonzero terms. Let $S$ be the set of positive integers $n$ so that $n\mid (a_0a_1\dots a_n)_b$. Given that $S$ is infinite, show that there are infinitely many primes that divide at least one element of $S$. [i]Proposed by Carl Schildkraut and Holden Mui[/i]

2013 Poland - Second Round, 1

Let $b$, $c$ be integers and $f(x) = x^2 + bx + c$ be a trinomial. Prove, that if for integers $k_1$, $k_2$ and $k_3$ values of $f(k_1)$, $f(k_2)$ and $f(k_3)$ are divisible by integer $n \neq 0$, then product $(k_1 - k_2)(k_2 - k_3)(k_3 - k_1)$ is divisible by $n$ too.

2018 India National Olympiad, 4

Find all polynomials with real coefficients $P(x)$ such that $P(x^2+x+1)$ divides $P(x^3-1)$.

STEMS 2021 Math Cat B, Q2

Determine all non-constant monic polynomials $P(x)$ with integer coefficients such that no prime $p>10^{100}$ divides any number of the form $P(2^n)$

1998 Nordic, 3

(a) For which positive numbers $n$ does there exist a sequence $x_1, x_2, ..., x_n$, which contains each of the numbers $1, 2, ..., n$ exactly once and for which $x_1 + x_2 +... + x_k$ is divisible by $k$ for each $k = 1, 2,...., n$? (b) Does there exist an infinite sequence $x_1, x_2, x_3, ..., $ which contains every positive integer exactly once and such that $x_1 + x_2 +... + x_k$ is divisible by $k$ for every positive integer $k$?

1998 IMO Shortlist, 7

Prove that for each positive integer $n$, there exists a positive integer with the following properties: It has exactly $n$ digits. None of the digits is 0. It is divisible by the sum of its digits.

2023 239 Open Mathematical Olympiad, 5

Let $a{}$ and $b>1$ be natural numbers. Prove that there exists a natural number $n < b^2$ such that the number $a^n + n$ is divisible by $b{}$.

1999 Mongolian Mathematical Olympiad, Problem 4

Investigate if there exist infinitely many natural numbers $n$ such that $n$ divides $2^n+3^n$.

2022 Malaysia IMONST 2, 5

Let $a, b, r,$ and $s$ be positive integers ($a \ge 2$), where $a$ and $b$ have no common prime factor. Prove that if $a^r + b^r$ is divisible by $a^s + b^s$, then $r$ is divisible by $s$.

IMSC 2024, 1

For a positive integer $n$ denote by $P_0(n)$ the product of all non-zero digits of $n$. Let $N_0$ be the set of all positive integers $n$ such that $P_0(n)|n$. Find the largest possible value of $\ell$ such that $N_0$ contains infinitely many strings of $\ell$ consecutive integers. [i]Proposed by Navid Safaei, Iran[/i]

2013 Vietnam Team Selection Test, 2

a. Prove that there are infinitely many positive integers $t$ such that both $2012t+1$ and $2013t+1$ are perfect squares. b. Suppose that $m,n$ are positive integers such that both $mn+1$ and $mn+n+1$ are perfect squares. Prove that $8(2m+1)$ divides $n$.

2020 AMC 10, 6

Tags: divisibility
How many $4$-digit positive integers (that is, integers between $1000$ and $9999$, inclusive) having only even digits are divisible by $5?$ $\textbf{(A) } 80 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 125 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 500$

1975 IMO, 4

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

1998 Slovenia National Olympiad, Problem 1

Show that for any integter $a$, the number $\frac{a^5}5+\frac{a^3}3+\frac{7a}{15}$ is an integer.

2019 ELMO Shortlist, N4

A positive integer $b$ and a sequence $a_0,a_1,a_2,\dots$ of integers $0\le a_i<b$ is given. It is known that $a_0\neq 0$ and the sequence $\{a_i\}$ is eventually periodic but has infinitely many nonzero terms. Let $S$ be the set of positive integers $n$ so that $n\mid (a_0a_1\dots a_n)_b$. Given that $S$ is infinite, show that there are infinitely many primes that divide at least one element of $S$. [i]Proposed by Carl Schildkraut and Holden Mui[/i]

2017 Balkan MO Shortlist, N4

Find all pairs of positive integers $(x,y)$ , such that $x^2$ is divisible by $2xy^2 -y^3 +1$.

2015 Balkan MO Shortlist, N4

Find all pairs of positive integers $(x,y)$ with the following property: If $a,b$ are relative prime and positive divisors of $ x^3 + y^3$, then $a+b - 1$ is divisor of $x^3+y^3$. (Cyprus)

2011 IMO Shortlist, 1

For any integer $d > 0,$ let $f(d)$ be the smallest possible integer that has exactly $d$ positive divisors (so for example we have $f(1)=1, f(5)=16,$ and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^k\right)$ divides $f\left(2^{k+1}\right).$ [i]Proposed by Suhaimi Ramly, Malaysia[/i]

2016 Polish MO Finals, 4

Let $k, n$ be odd positve integers greater than $1$. Prove that if there a exists natural number $a$ such that $k|2^a+1, \ n|2^a-1$, then there is no natural number $b$ satisfying $k|2^b-1, \ n|2^b+1$.

1990 IMO Longlists, 79

Determine all integers $ n > 1$ such that \[ \frac {2^n \plus{} 1}{n^2} \] is an integer.