This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2021 Bangladesh Mathematical Olympiad, Problem 12

A function $g: \mathbb{Z} \to \mathbb{Z}$ is called adjective if $g(m)+g(n)>max(m^2,n^2)$ for any pair of integers $m$ and $n$. Let $f$ be an adjective function such that the value of $f(1)+f(2)+\dots+f(30)$ is minimized. Find the smallest possible value of $f(25)$.

2012 Belarus Team Selection Test, 3

Find all triples $(a,b, c)$ of real numbers for which there exists a non-zero function $f: R \to R$, such that $$af(xy + f(z)) + bf(yz + f(x)) + cf(zx + f(y)) = 0$$ for all real $x, y, z$. (E. Barabanov)

2007 France Team Selection Test, 2

Find all functions $f: \mathbb{Z}\rightarrow\mathbb{Z}$ such that for all $x,y \in \mathbb{Z}$: \[f(x-y+f(y))=f(x)+f(y).\]

2020 New Zealand MO, 5

Find all functions $f:\mathbb R \to \mathbb R$ such that for all $x,y\in \mathbb R$ $f(x+f(y))=2x+2f(y+1)$

2024 Rioplatense Mathematical Olympiad, 5

Let $S = \{2, 3, 4, \dots\}$ be the set of positive integers greater than 1. Find all functions $f : S \to S$ that satisfy \[ \text{gcd}(a, f(b)) \cdot \text{lcm}(f(a), b) = f(ab) \] for all pairs of integers $a, b \in S$. Clarification: $\text{gcd}(a,b)$ is the greatest common divisor of $a$ and $b$, and $\text{lcm}(a,b)$ is the least common multiple of $a$ and $b$.

2024 Argentina Iberoamerican TST, 5

Let \( \mathbb R \) be the set of real numbers. Find all functions \( f: \mathbb{R} \to \mathbb{R} \) such that, for all real numbers \( x \) and \( y \), the following equation holds:$$\big (x^2-y^2\big )f\big (xy\big )=xf\big (x^2y\big )-yf\big (xy^2\big ).$$

PEN K Problems, 13

Find all functions $f: \mathbb{Z}\to \mathbb{Z}$ such that for all $m\in \mathbb{Z}$: \[f(f(m))=m+1.\]

2003 IMO Shortlist, 5

Let $\mathbb{R}^+$ be the set of all positive real numbers. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ that satisfy the following conditions: - $f(xyz)+f(x)+f(y)+f(z)=f(\sqrt{xy})f(\sqrt{yz})f(\sqrt{zx})$ for all $x,y,z\in\mathbb{R}^+$; - $f(x)<f(y)$ for all $1\le x<y$. [i]Proposed by Hojoo Lee, Korea[/i]

2021 Thailand TST, 3

Find all functions $f : \mathbb{Z}\rightarrow \mathbb{Z}$ satisfying \[f^{a^{2} + b^{2}}(a+b) = af(a) +bf(b)\] for all integers $a$ and $b$

2016 Belarus Team Selection Test, 1

Find all functions $f:\mathbb{R}\to \mathbb{R},g:\mathbb{R}\to \mathbb{R}$ such that $$f(x-2f(y))= xf(y)-yf(x)+g(x)$$ for all real $x,y$

2019 Jozsef Wildt International Math Competition, W. 27

Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that$$f(-x)+\int \limits_0^xtf(x-t)dt=x,\ \forall\ x\in \mathbb{R}$$

1995 Israel Mathematical Olympiad, 8

A real number $\alpha$ is given. Find all functions $f : R^+ \to R^+$ satisfying $\alpha x^2f\left(\frac{1}{x}\right) +f(x) =\frac{x}{x+1}$ for all $x > 0$.

2015 Switzerland - Final Round, 3

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, such that for arbitrary $x,y \in \mathbb{R}$: \[ (y+1)f(x)+f(xf(y)+f(x+y))=y.\]

2019 India IMO Training Camp, P1

Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$

2016 India IMO Training Camp, 2

Find all functions $f:\mathbb R\to\mathbb R$ such that $$f\left( x^2+xf(y)\right)=xf(x+y)$$ for all reals $x,y$.

2015 Costa Rica - Final Round, 3

Indicate (justifying your answer) if there exists a function $f: R \to R$ such that for all $x \in R$ fulfills that i) $\{f(x))\} \sin^2 x + \{x\} cos (f(x)) cosx =f (x)$ ii) $f (f(x)) = f(x)$ where $\{m\}$ denotes the fractional part of $m$. That is, $\{2.657\} = 0.657$, and $\{-1.75\} = 0.25$.

Dumbest FE I ever created, 1.

Determine all functions $f\colon\mathbb{Z}_{>0}\to\mathbb{Z}_{>0}$ such that, for all positive integers $m$ and $n$, $$ m^{\phi(n)}+n^{\phi(m)} \mid f(m)^n + f(n)^m$$

2018 India IMO Training Camp, 3

Find all functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that $$f(x)f\left(yf(x)-1\right)=x^2f(y)-f(x),$$for all $x,y \in \mathbb{R}$.

2012 Harvard-MIT Mathematics Tournament, 7

Let $\otimes$ be a binary operation that takes two positive real numbers and returns a positive real number. Suppose further that $\otimes$ is continuous, commutative $(a\otimes b=b\otimes a)$, distributive across multiplication $(a\otimes(bc)=(a\otimes b)(a\otimes c))$, and that $2\otimes 2=4$. Solve the equation $x\otimes y=x$ for $y$ in terms of $x$ for $x>1$.

2022 Saudi Arabia BMO + EGMO TST, 2.4

Find all functions $f : R \to R$ such that $$2f(x)f(x + y) -f(x^2) =\frac{x}{2}(f(2x) + 4f(f(y)))$$ for all $x, y \in R$.

2000 Balkan MO, 1

Find all functions $f: \mathbb R \to \mathbb R$ such that \[ f( xf(x) + f(y) ) = f^2(x) + y \] for all $x,y\in \mathbb R$.

2015 Iran MO (3rd round), 5

Find all polynomials $p(x)\in\mathbb{R}[x]$ such that for all $x\in \mathbb{R}$: $p(5x)^2-3=p(5x^2+1)$ such that: $a) p(0)\neq 0$ $b) p(0)=0$

1998 Iran MO (3rd Round), 3

Find all functions $f : \mathbb R \to \mathbb R$ such that for all $x, y,$ \[f(f(x) + y) = f(x^2 - y) + 4f(x)y.\]

2014 Taiwan TST Round 2, 2

Determine all functions $f: \mathbb{Q} \rightarrow \mathbb{Z} $ satisfying \[ f \left( \frac{f(x)+a} {b}\right) = f \left( \frac{x+a}{b} \right) \] for all $x \in \mathbb{Q}$, $a \in \mathbb{Z}$, and $b \in \mathbb{Z}_{>0}$. (Here, $\mathbb{Z}_{>0}$ denotes the set of positive integers.)

2017 Peru IMO TST, 1

Find all functions $f: \mathbb{R}\rightarrow \mathbb{R}$ such that \[ f(xy-1) + f(x)f(y) = 2xy-1 \] for all x and y