Found problems: 1513
2015 Korea National Olympiad, 1
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all reals $x,y,z$, we have $$(f(x)+1)(f(y)+f(z))=f(xy+z)+f(xz-y)$$
2019 Danube Mathematical Competition, 2
Find all nondecreasing functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that verify the relation
$$ f\left( f\left( x^2 \right) +y+f(y) \right) =x^2+2f(y) , $$
for any real numbers $ x,y. $
2015 Mexico National Olympiad, 3
Let $\mathbb{N} =\{1, 2, 3, ...\}$ be the set of positive integers. Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function that gives a positive integer value, to every positive integer. Suppose that $f$ satisfies the following conditions:
$f(1)=1$
$f(a+b+ab)=a+b+f(ab)$
Find the value of $f(2015)$
Proposed by Jose Antonio Gomez Ortega
2008 Dutch IMO TST, 1
Find all funtions $f : Z_{>0} \to Z_{>0}$ that satisfy $f(f(f(n))) + f(f(n)) + f(n) = 3n$ for all $n \in Z_{>0}$ .
2011 Turkey Team Selection Test, 1
Let $\mathbb{Q^+}$ denote the set of positive rational numbers. Determine all functions $f: \mathbb{Q^+} \to \mathbb{Q^+}$ that satisfy the conditions
\[ f \left( \frac{x}{x+1}\right) = \frac{f(x)}{x+1} \qquad \text{and} \qquad f \left(\frac{1}{x}\right)=\frac{f(x)}{x^3}\]
for all $x \in \mathbb{Q^+}.$
2023 Dutch BxMO TST, 2
Find all functions $f : \mathbb R \to \mathbb R$ for which
\[f(a - b) f(c - d) + f(a - d) f(b - c) \leq (a - c) f(b - d),\]
for all real numbers $a, b, c$ and $d$. Note that there is only one occurrence of $f$ on the right hand side!
2019 Philippine TST, 4
Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$
2024-IMOC, A4
find all function $f:\mathbb{R} \to \mathbb{R}$ such that
\[f(x^3-xf(y)^2)=xf(x+y)f(x-y)\]
holds for all real number $x$, $y$.
[i]Proposed by chengbilly[/i]
2019 IMO Shortlist, N4
Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.
Dumbest FE I ever created, 2.
Find all functions \( f: \mathbb{R} \rightarrow \mathbb{R} \) such that for all \( x, y \in \mathbb{R} \),
\[
f(x + f(2y)) + f(x^2 - y) = f(f(x)) f(x + 1) + 2y - f(y).
\]
2018 SIMO, Q1
Find all functions $f:\mathbb{N}\setminus\{1\} \rightarrow\mathbb{N}$ such that for all distinct $x,y\in \mathbb{N}$ with $y\ge 2018$, $$\gcd(f(x),y)\cdot \mathrm{lcm}(x,f(y))=f(x)f(y).$$
2025 Alborz Mathematical Olympiad, P1
Let \( \mathbb{Z^{+}} \) denote the set of all positive integers. Find all functions \( f: \mathbb{Z^{+}} \rightarrow \mathbb{Z^{+}} \) such that for every pair of positive integers \( a \) and \( b \), there exists a positive integer \( c \) satisfying:
$$
f(a)f(b) - ab = 2^{c-1} - 1.
$$
Proposed by Matin Yousefi
1991 Poland - Second Round, 4
Find all monotone functions $ f: \mathbb{R} \to \mathbb{R} $ satisfying the equation
$$
f(4x)-f(3x) = 2x \ \ \text{ for } \ \ x \in \mathbb{R}.$$
2015 Costa Rica - Final Round, F2
Find all functions $f: R \to R$ such that $f (f (x) f (y)) = xy$ and there is no $k \in R -\{0,1,-1\}$ such that $f (k) = k$.
2005 VJIMC, Problem 2
Let $f:A^3\to A$ where $A$ is a nonempty set and $f$ satisfies:
(a) for all $x,y\in A$, $f(x,y,y)=x=f(y,y,x)$ and
(b) for all $x_1,x_2,x_3,y_1,y_2,y_3,z_1,z_2,z_3\in A$,
$$f(f(x_1,x_2,x_3),f(y_1,y_2,y_3),f(z_1,z_2,z_3))=f(f(x_1,y_1,z_1),f(x_2,y_2,z_2),f(x_3,y_3,z_3)).$$
Prove that for an arbitrary fixed $a\in A$, the operation $x+y=f(x,a,y)$ is an Abelian group addition.
1997 Rioplatense Mathematical Olympiad, Level 3, 6
Let $N$ be the set of positive integers.
Determine if there is a function $f: N\to N$ such that $f(f(n))=2n$, for all $n$ belongs to $N$.
2010 Ukraine Team Selection Test, 3
Find all functions $f$ from the set of real numbers into the set of real numbers which satisfy for all $x$, $y$ the identity \[ f\left(xf(x+y)\right) = f\left(yf(x)\right) +x^2\]
[i]Proposed by Japan[/i]
2020 Peru Iberoamerican Team Selection Test, P6
Find all functions $f : \mathbb{Z}\to \mathbb{Z}$ that satisfy:
$i) f(f(x))=x, \forall x\in\mathbb{Z}$
$ii)$ For any integer $x$ and $y$ such that $x + y$ is odd, it holds that $f(x) + f(y) \ge x + y.$
2020 Hong Kong TST, 4
Find all real-valued functions $f$ defined on the set of real numbers such that $$f(f(x)+y)+f(x+f(y))=2f(xf(y))$$ for any real numbers $x$ and $y$.
Russian TST 2014, P3
Find all functions $f : \mathbb{R}\to\mathbb{R}$ such that $f(0) = 0$ and for any real numbers $x, y$ the following equality holds \[f(x^2+yf(x))+f(y^2+xf(y))=f(x+y)^2.\]
2006 Italy TST, 3
Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that for all integers $m,n$,
\[f(m - n + f(n)) = f(m) + f(n).\]
2015 Ukraine Team Selection Test, 8
Find all functions $f: R \to R$ such that $f(x)f(yf(x)-1)=x^2f(y)-f(x)$ for all real $x ,y$
1992 IMO Shortlist, 12
Let $ f, g$ and $ a$ be polynomials with real coefficients, $ f$ and $ g$ in one variable and $ a$ in two variables. Suppose
\[ f(x) \minus{} f(y) \equal{} a(x, y)(g(x) \minus{} g(y)) \forall x,y \in \mathbb{R}\]
Prove that there exists a polynomial $ h$ with $ f(x) \equal{} h(g(x)) \text{ } \forall x \in \mathbb{R}.$
2019 IMO Shortlist, A7
Let $\mathbb Z$ be the set of integers. We consider functions $f :\mathbb Z\to\mathbb Z$ satisfying
\[f\left(f(x+y)+y\right)=f\left(f(x)+y\right)\]
for all integers $x$ and $y$. For such a function, we say that an integer $v$ is [i]f-rare[/i] if the set
\[X_v=\{x\in\mathbb Z:f(x)=v\}\]
is finite and nonempty.
(a) Prove that there exists such a function $f$ for which there is an $f$-rare integer.
(b) Prove that no such function $f$ can have more than one $f$-rare integer.
[i]Netherlands[/i]
1995 Tuymaada Olympiad, 7
Find a continuous function $f(x)$ satisfying the identity $f(x)-f(ax)=x^n-x^m$, where $n,m\in N , 0<a<1$