This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2001 Miklós Schweitzer, 5

Prove that if the function $f$ is defined on the set of positive real numbers, its values are real, and $f$ satisfies the equation $$f\left( \frac{x+y}{2}\right) + f\left(\frac{2xy}{x+y} \right) =f(x)+f(y)$$ for all positive $x,y$, then $$2f(\sqrt{xy})=f(x)+f(y)$$ for every pair $x,y$ of positive numbers.

2022 Abelkonkurransen Finale, 4a

Find all functions $f:\mathbb R^+ \to \mathbb R^+$ satisfying \begin{align*} f\left(\frac{1}{x}\right) \geq 1 - \frac{\sqrt{f(x)f\left(\frac{1}{x}\right)}}{x} \geq x^2 f(x), \end{align*} for all positive real numbers $x$.

2014 Costa Rica - Final Round, 5

Let $f : N\to N$ such that $$f(1) = 0\,\, , \,\,f(3n) = 2f(n) + 2\,\, , \,\,f(3n-1) = 2f(n) + 1\,\, , \,\,f(3n-2) = 2f(n).$$ Determine the smallest value of $n$ so that $f (n) = 2014.$

2024 Taiwan TST Round 2, A

Let $\mathbb{R}_+$ be the set of positive real numbers. Find all functions $f\colon \mathbb{R}_+ \to \mathbb{R}_+$ such that \[f(xy + x + y) + f \left( \frac1x \right) f\left( \frac1y \right) = 1\] for every $x$, $y\in \mathbb{R}_+$. [i]Proposed by Li4 and Untro368.[/i]

2013 USA TSTST, 6

Let $\mathbb N$ be the set of positive integers. Find all functions $f: \mathbb N \to \mathbb N$ that satisfy the equation \[ f^{abc-a}(abc) + f^{abc-b}(abc) + f^{abc-c}(abc) = a + b + c \] for all $a,b,c \ge 2$. (Here $f^1(n) = f(n)$ and $f^k(n) = f(f^{k-1}(n))$ for every integer $k$ greater than $1$.)

2017 Thailand Mathematical Olympiad, 9

Determine all functions $f$ on the set of positive rational numbers such that $f(xf(x) + f(y)) = f(x)^2 + y$ for all positive rational numbers $x, y$.

2018 Balkan MO Shortlist, A5

Let $f: \mathbb {R} \to \mathbb {R}$ be a concave function and $g: \mathbb {R} \to \mathbb {R}$ be a continuous function . If $$ f (x + y) + f (x-y) -2f (x) = g (x) y^2 $$for all $x, y \in \mathbb {R}, $ prove that $f $ is a second degree polynomial.

2002 India IMO Training Camp, 10

Let $ T$ denote the set of all ordered triples $ (p,q,r)$ of nonnegative integers. Find all functions $ f: T \rightarrow \mathbb{R}$ satisfying \[ f(p,q,r) = \begin{cases} 0 & \text{if} \; pqr = 0, \\ 1 + \frac{1}{6}(f(p + 1,q - 1,r) + f(p - 1,q + 1,r) & \\ + f(p - 1,q,r + 1) + f(p + 1,q,r - 1) & \\ + f(p,q + 1,r - 1) + f(p,q - 1,r + 1)) & \text{otherwise} \end{cases} \] for all nonnegative integers $ p$, $ q$, $ r$.

2010 Saudi Arabia BMO TST, 3

Find all functions $f : R \to R$ such that $$xf(x+xy)= xf(x)+ f(x^2)f(y)$$ for all $x,y \in R$.

2009 Dutch IMO TST, 4

Find all functions $f : Z \to Z$ satisfying $f(m + n) + f(mn -1) = f(m)f(n) + 2$ for all $m, n \in Z$.

2007 Czech and Slovak Olympiad III A, 3

Consider a function $f:\mathbb N\rightarrow \mathbb N$ such that for any two positive integers $x,y$, the equation $f(xf(y))=yf(x)$ holds. Find the smallest possible value of $f(2007)$.

2022 Iran-Taiwan Friendly Math Competition, 2

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that: $\bullet$ $f(x)<2$ for all $x\in (0,1)$; $\bullet$ for all real numbers $x,y$ we have: $$max\{f(x+y),f(x-y)\}=f(x)+f(y)$$ Proposed by Navid Safaei

2020 International Zhautykov Olympiad, 5

Let $Z$ be the set of all integers. Find all the function $f: Z->Z$ such that $f(4x+3y)=f(3x+y)+f(x+2y)$ For all integers $x,y$

2017 Balkan MO Shortlist, N2

Find all functions $f :Z_{>0} \to Z_{>0}$ such that the number $xf(x) + f ^2(y) + 2xf(y)$ is a perfect square for all positive integers $x,y$.

2020 Korea - Final Round, P3

Find all $f: \mathbb{Q}_{+} \rightarrow \mathbb{R}$ such that \[ f(x)+f(y)+f(z)=1 \] holds for every positive rationals $x, y, z$ satisfying $x+y+z+1=4xyz$.

2018 Estonia Team Selection Test, 4

Find all functions $f : R \to R$ that satisfy $f (xy + f(xy)) = 2x f(y)$ for all $x, y \in R$

2020 Taiwan TST Round 2, 1

Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.

2021 Francophone Mathematical Olympiad, 4

Let $\mathbb{N}_{\geqslant 1}$ be the set of positive integers. Find all functions $f \colon \mathbb{N}_{\geqslant 1} \to \mathbb{N}_{\geqslant 1}$ such that, for all positive integers $m$ and $n$: \[\mathrm{GCD}\left(f(m),n\right) + \mathrm{LCM}\left(m,f(n)\right) = \mathrm{GCD}\left(m,f(n)\right) + \mathrm{LCM}\left(f(m),n\right).\] Note: if $a$ and $b$ are positive integers, $\mathrm{GCD}(a,b)$ is the largest positive integer that divides both $a$ and $b$, and $\mathrm{LCM}(a,b)$ is the smallest positive integer that is a multiple of both $a$ and $b$.

2016 Nordic, 3

Find all $a\in\mathbb R$ for which there exists a function $f\colon\mathbb R\rightarrow\mathbb R$, such that (i) $f(f(x))=f(x)+x$, for all $x\in\mathbb R$, (ii) $f(f(x)-x)=f(x)+ax$, for all $x\in\mathbb R$.

2019 Belarus Team Selection Test, 1.1

Does there exist a function $f:\mathbb N\to\mathbb N$ such that $$ f(f(n+1))=f(f(n))+2^{n-1} $$ for any positive integer $n$? (As usual, $\mathbb N$ stands for the set of positive integers.) [i](I. Gorodnin)[/i]

2015 Middle European Mathematical Olympiad, 2

Determine all functions $f:\mathbb{R}\setminus\{0\}\to \mathbb{R}\setminus\{0\}$ such that $$f(x^2yf(x))+f(1)=x^2f(x)+f(y)$$ holds for all nonzero real numbers $x$ and $y$.

2002 IMO Shortlist, 4

Find all functions $f$ from the reals to the reals such that \[ \left(f(x)+f(z)\right)\left(f(y)+f(t)\right)=f(xy-zt)+f(xt+yz) \] for all real $x,y,z,t$.

1967 IMO Shortlist, 3

The function $\varphi(x,y,z)$ defined for all triples $(x,y,z)$ of real numbers, is such that there are two functions $f$ and $g$ defined for all pairs of real numbers, such that \[\varphi(x,y,z) = f(x+y,z) = g(x,y+z)\] for all real numbers $x,y$ and $z.$ Show that there is a function $h$ of one real variable, such that \[\varphi(x,y,z) = h(x+y+z)\] for all real numbers $x,y$ and $z.$

2023 Irish Math Olympiad, P4

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ with the property that $$f(x)f(y) = (xy - 1)^2f\left(\frac{x + y - 1}{xy - 1}\right)$$ for all real numbers $x, y$ with $xy \neq 1$.

1997 Balkan MO, 4

Find all functions $f: \mathbb R \to \mathbb R$ such that \[ f( xf(x) + f(y) ) = f^2(x) + y \] for all $x,y\in \mathbb R$.