This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2021 Pan-African, 5

Find all functions $f$ $:$ $\mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x,y \in \mathbb{R}$ : $$(f(x)+y)(f(y)+x)=f(x^2)+f(y^2)+2f(xy)$$

2007 Switzerland - Final Round, 5

Determine all functions $f : R_{\ge 0} \to R_{\ge 0}$ with the following properties: (a) $f(1) = 0$, (b) $f(x) > 0$ for all $x > 1$, (c) For all $x, y\ge 0$ with $x + y > 0$ holds $$f(xf(y))f(y) = f\left( \frac{xy}{x + y}\right)$$

2016 Bosnia And Herzegovina - Regional Olympiad, 4

Find all functions $f : \mathbb{Q} \rightarrow \mathbb{R}$ such that: $a)$ $f(1)+2>0$ $b)$ $f(x+y)-xf(y)-yf(x)=f(x)f(y)+f(x)+f(y)+xy$, $\forall x,y \in \mathbb{Q}$ $c)$ $f(x)=3f(x+1)+2x+5$, $\forall x \in \mathbb{Q}$

2023 Myanmar IMO Training, 1

Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that $$m+f(n) \mid f(m)^2 - nf(n)$$ for all positive integers $m$ and $n$. (Here, $f(m)^2$ denotes $\left(f(m)\right)^2$.)

2014 District Olympiad, 4

Find all functions $f:\mathbb{N}^{\ast}\rightarrow\mathbb{N}^{\ast}$ with the properties: [list=a] [*]$ f(m+n) -1 \mid f(m)+f(n),\quad \forall m,n\in\mathbb{N}^{\ast} $ [*]$ n^{2}-f(n)\text{ is a square } \;\forall n\in\mathbb{N}^{\ast} $[/list]

1998 Romania Team Selection Test, 2

Find all positive integers $ k$ for which the following statement is true: If $ F(x)$ is a polynomial with integer coefficients satisfying the condition $ 0 \leq F(c) \leq k$ for each $ c\in \{0,1,\ldots,k \plus{} 1\}$, then $ F(0) \equal{} F(1) \equal{} \ldots \equal{} F(k \plus{} 1)$.

2017 Pakistan TST, Problem 3

Find all $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that for all distinct $x,y,z$ $f(x)^2-f(y)f(z)=f(x^y)f(y)f(z)[f(y^z)-f(z^x)]$

2021 Francophone Mathematical Olympiad, 4

Let $\mathbb{N}_{\ge 1}$ be the set of positive integers. Find all functions $f \colon \mathbb{N}_{\ge 1} \to \mathbb{N}_{\ge 1}$ such that, for all positive integers $m$ and $n$: (a) $n = \left(f(2n)-f(n)\right)\left(2 f(n) - f(2n)\right)$, (b)$f(m)f(n) - f(mn) = \left(f(2m)-f(m)\right)\left(2 f(n) - f(2n)\right) + \left(f(2n)-f(n)\right)\left(2 f(m) - f(2m)\right)$, (c) $m-n$ divides $f(2m)-f(2n)$ if $m$ and $n$ are distinct odd prime numbers.

Gheorghe Țițeica 2025, P1

Find all continuous functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $f(x+y)=f(x+f(y))$ for all $x,y\in\mathbb{R}$.

1999 Nordic, 1

The function $f$ is defined for non-negative integers and satisfies the condition $f(n) = f(f(n + 11))$, if $n \le 1999$ and $f(n) = n - 5$, if $n > 1999$. Find all solutions of the equation $f(n) = 1999$.

2012 China Team Selection Test, 3

Given an integer $n\ge 2$, a function $f:\mathbb{Z}\rightarrow \{1,2,\ldots,n\}$ is called [i]good[/i], if for any integer $k,1\le k\le n-1$ there exists an integer $j(k)$ such that for every integer $m$ we have \[f(m+j(k))\equiv f(m+k)-f(m) \pmod{n+1}. \] Find the number of [i]good[/i] functions.

2024 ELMO Shortlist, A7

For some positive integer $n,$ Elmo writes down the equation \[x_1+x_2+\dots+x_n=x_1+x_2+\dots+x_n.\] Elmo inserts at least one $f$ to the left side of the equation and adds parentheses to create a valid functional equation. For example, if $n=3,$ Elmo could have created the equation \[f(x_1+f(f(x_2)+x_3))=x_1+x_2+x_3.\] Cookie Monster comes up with a function $f: \mathbb{Q}\to\mathbb{Q}$ which is a solution to Elmo's functional equation. (In other words, Elmo's equation is satisfied for all choices of $x_1,\dots,x_n\in\mathbb{Q})$. Is it possible that there is no integer $k$ (possibly depending on $f$) such that $f^k(x)=x$ for all $x$? [i]Srinivas Arun[/i]

2024 Mongolian Mathematical Olympiad, 3

Let $\mathbb{R}^+$ denote the set of positive real numbers. Determine all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for all positive real numbers $x$ and $y$ : \[f(x)f(y+f(x))=f(1+xy)\] [i]Proposed by Otgonbayar Uuye. [/i]

2020 Jozsef Wildt International Math Competition, W44

We consider a function $f:\mathbb R\to\mathbb R$ such that $$f(x+y)+f(xy-1)=f(x)f(y)+f(x)+f(y)+1$$ for each $x,y\in\mathbb R$. i) Calculate $f(0)$ and $f(-1)$. ii) Prove that $f$ is an even function. iii) Give an example of such a function. iv) Find all monotone functions with the above property. [i]Proposed by Mihály Bencze and Marius Drăgan[/i]

2022 Thailand Online MO, 10

Let $\mathbb{Q}$ be the set of rational numbers. Determine all functions $f : \mathbb{Q}\to\mathbb{Q}$ satisfying both of the following conditions. [list=disc] [*] $f(a)$ is not an integer for some rational number $a$. [*] For any rational numbers $x$ and $y$, both $f(x + y) - f(x) - f(y)$ and $f(xy) - f(x)f(y)$ are integers. [/list]

2010 Indonesia TST, 2

Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ f(x^3\plus{}y^3)\equal{}xf(x^2)\plus{}yf(y^2)\] for all real numbers $ x$ and $ y$. [i]Hery Susanto, Malang[/i]

2016 Romania Team Selection Tests, 2

Determine all $f:\mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ such that $f(m)\geq m$ and $f(m+n) \mid f(m)+f(n)$ for all $m,n\in \mathbb{Z}^+$

2023 ELMO Shortlist, A2

Let \(\mathbb R_{>0}\) denote the set of positive real numbers. Find all functions \(f:\mathbb R_{>0}\to\mathbb R_{>0}\) such that for all positive real numbers \(x\) and \(y\), \[f(xy+1)=f(x)f\left(\frac1x+f\left(\frac1y\right)\right).\] [i]Proposed by Luke Robitaille[/i]

2020 USEMO, 4

A function $f$ from the set of positive real numbers to itself satisfies $$f(x + f(y) + xy) = xf(y) + f(x + y)$$ for all positive real numbers $x$ and $y$. Prove that $f(x) = x$ for all positive real numbers $x$.

2023 Ukraine National Mathematical Olympiad, 11.4

Find all functions $f : \mathbb{R} \to \mathbb{R}$, such that for any real $x, y$ holds the following: $$f(x+yf(x+y)) = f(y^2) + xf(y) + f(x)$$ [i]Proposed by Vadym Koval[/i]

1979 IMO Longlists, 80

Prove that the functional equations \[f(x + y) = f(x) + f(y),\] \[ \text{and} \qquad f(x + y + xy) = f(x) + f(y) + f(xy) \quad (x, y \in \mathbb R)\] are equivalent.

1975 IMO Shortlist, 10

Determine the polynomials P of two variables so that: [b]a.)[/b] for any real numbers $t,x,y$ we have $P(tx,ty) = t^n P(x,y)$ where $n$ is a positive integer, the same for all $t,x,y;$ [b]b.)[/b] for any real numbers $a,b,c$ we have $P(a + b,c) + P(b + c,a) + P(c + a,b) = 0;$ [b]c.)[/b] $P(1,0) =1.$

2011 Indonesia TST, 1

Let $Q^+$ denote the set of positive rationals. Determine all functions $f : Q^+ \to Q^+$ that satisfy both of these conditions: (i) $f(x)$ is an integer if and only if $x$ is an integer; (ii) $f(f(xf(y)) + x) = yf(x) + x$ for all $x, y \in Q^+$.

2018 Brazil Undergrad MO, 2

Let $ f, g: \mathbb {R} \to \mathbb {R} $ function such that $ f (x + g (y)) = - x + y + 1 $ for each pair of real numbers $ x $ e $ y $. What is the value of $ g (x + f (y) $?

2015 Indonesia MO Shortlist, A2

Suppose $a$ real number so that there is a non-constant polynomial $P (x)$ such that $\frac{P(x+1)-P(x)}{P(x+\pi)}= \frac{a}{x+\pi}$ for each real number $x$, with $x+\pi \ne 0$ and $P(x+\pi)\ne 0$. Show that $a$ is a natural number.