This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2020 IMEO, Problem 3

Find all functions $f:\mathbb{R^+} \to \mathbb{R^+}$ such that for all positive real $x, y$ holds $$xf(x)+yf(y)=(x+y)f\left(\frac{x^2+y^2}{x+y}\right)$$. [i]Fedir Yudin[/i]

2024 Irish Math Olympiad, P10

Let $\mathbb{Z}_+=\{1,2,3,4...\}$ be the set of all positive integers. Find, with proof, all functions $f : \mathbb{Z}_+ \mapsto \mathbb{Z}_+$ with the property that $$f(x+f(y)+f(f(z)))=z+f(y)+f(f(x))$$ for all positive integers $x,y,z$.

2014 International Zhautykov Olympiad, 2

Does there exist a function $f: \mathbb R \to \mathbb R $ satisfying the following conditions: (i) for each real $y$ there is a real $x$ such that $f(x)=y$ , and (ii) $f(f(x)) = (x - 1)f(x) + 2$ for all real $x$ ? [i]Proposed by Igor I. Voronovich, Belarus[/i]

2008 VJIMC, Problem 1

Find all functions $f:\mathbb Z\to\mathbb Z$ such that $$19f(x)-17f(f(x))=2x$$for all $x\in\mathbb Z$.

2017 Korea National Olympiad, problem 7

Find all real numbers $c$ such that there exists a function $f: \mathbb{R}_{ \ge 0} \rightarrow \mathbb{R}$ which satisfies the following. For all nonnegative reals $x, y$, $f(x+y^2) \ge cf(x)+y$. Here $\mathbb{R}_{\ge 0}$ is the set of all nonnegative reals.

2018 Saudi Arabia BMO TST, 2

Find all functions $f : R \to R$ such that $f( 2x^3 + f (y)) = y + 2x^2 f (x)$ for all real numbers $x, y$.

2008 Korean National Olympiad, 7

Prove that the only function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following is $f(x)=x$. (i) $\forall x \not= 0$, $f(x) = x^2f(\frac{1}{x})$. (ii) $\forall x, y$, $f(x+y) = f(x)+f(y)$. (iii) $f(1)=1$.

2016 Greece Team Selection Test, 3

Determine all functions $f:\mathbb{Z}\rightarrow\mathbb{Z}$ with the property that \[f(x-f(y))=f(f(x))-f(y)-1\] holds for all $x,y\in\mathbb{Z}$.

2021 Belarusian National Olympiad, 11.1

Find all functions $f: \mathbb{R} \to \mathbb{R}$, such that for all real $x,y$ the following equation holds:$$f(x-0.25)+f(y-0.25)=f(x+\lfloor y+0.25 \rfloor - 0.25)$$

2022 Vietnam TST, 1

Given a real number $\alpha$ and consider function $\varphi(x)=x^2e^{\alpha x}$ for $x\in\mathbb R$. Find all function $f:\mathbb R\to\mathbb R$ that satisfy: $$f(\varphi(x)+f(y))=y+\varphi(f(x))$$ forall $x,y\in\mathbb R$

2021 Middle European Mathematical Olympiad, 1

Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that the inequality \[ f(x^2)-f(y^2) \le (f(x)+y)(x-f(y)) \] holds for all real numbers $x$ and $y$.

2018 Iran Team Selection Test, 1

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ that satisfy the following conditions: a. $x+f(y+f(x))=y+f(x+f(y)) \quad \forall x,y \in \mathbb{R}$ b. The set $I=\left\{\frac{f(x)-f(y)}{x-y}\mid x,y\in \mathbb{R},x\neq y \right\}$ is an interval. [i]Proposed by Navid Safaei[/i]

2022 SG Originals, Q2

Find all functions $f$ mapping non-empty finite sets of integers, to integers, such that $$f(A+B)=f(A)+f(B)$$ for all non-empty sets of integers $A$ and $B$. $A+B$ is defined as $\{a+b: a \in A, b \in B\}$.

1995 Belarus Team Selection Test, 3

Show that there is no infinite sequence an of natural numbers such that \[a_{a_n}=a_{n+1}a_{n-1}-a_{n}^2\] for all $n\geq 2$

2022 Iberoamerican, 6

Find all functions $f:\mathbb{N} \rightarrow \mathbb{N}$, such that $f(a)f(a+b)-ab$ is a perfect square for all $a, b \in \mathbb{N}$.

2016 Latvia Baltic Way TST, 4

Find all functions $f : R \to R$ defined for real numbers, take real values and for all real $x$ and $y$ the equality holds: $$f(2^x+2y) =2^yf(f(x))f(y).$$

2016 Azerbaijan BMO TST, 4

Find all functions $f:\mathbb{N}\to\mathbb{N}$ such that \[f(f(n))=n+2015\] where $n\in \mathbb{N}.$

2006 Spain Mathematical Olympiad, 1

Find all the functions $f:(0,+\infty) \to R $ that satisfy the equation $$f(x)f(y)+f\big(\frac{\lambda}{x})f(\frac{\lambda}{y})=2f(xy)$$ for all pairs of $x,y$ real and positive numbers, where $\lambda$ is a positive real number such that $f(\lambda )=1$

PEN K Problems, 2

Find all surjective functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $m,n\in \mathbb{N}$: \[m \vert n \Longleftrightarrow f(m) \vert f(n).\]

2018 Polish MO Finals, 3

Find all real numbers $c$ for which there exists a function $f\colon\mathbb R\rightarrow \mathbb R$ such that for each $x, y\in\mathbb R$ it's true that $$f(f(x)+f(y))+cxy=f(x+y).$$

2015 Latvia Baltic Way TST, 2

It is known about the function $f : R \to R$ that $\bullet$ $f(x) > f(y)$ for all real $x > y$ $\bullet$ $f(x) > x$ for all real $x$ $\bullet$ $f(2x - f (x)) = x$ for all real $x$. Prove that $f(x) = x + f(0)$ for all real numbers $x$.

2022 Taiwan TST Round 3, A

Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $$(f(a)-f(b))(f(b)-f(c))(f(c)-f(a)) = f(ab^2+bc^2+ca^2) - f(a^2b+b^2c+c^2a)$$for all real numbers $a$, $b$, $c$. [i]Proposed by Ankan Bhattacharya, USA[/i]

2023 OMpD, 1

Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that, for all real numbers $x$ and $y$, $$f(x)(x+f(f(y))) = f(x^2)+xf(y)$$

2016 Vietnam National Olympiad, 1

Find all $a\in\mathbb{R}$ such that there is function $f:\mathbb{R}\to\mathbb{R}$ i) $f(1)=2016$ ii) $f(x+y+f(y))=f(x)+ay\quad\forall x,y\in\mathbb{R}$

2010 IMO Shortlist, 6

Suppose that $f$ and $g$ are two functions defined on the set of positive integers and taking positive integer values. Suppose also that the equations $f(g(n)) = f(n) + 1$ and $g(f(n)) = g(n) + 1$ hold for all positive integers. Prove that $f(n) = g(n)$ for all positive integer $n.$ [i]Proposed by Alex Schreiber, Germany[/i]