This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2024 China Team Selection Test, 5

Find all functions $f:\mathbb N_+\to \mathbb N_+,$ such that for all positive integer $a,b,$ $$\sum_{k=0}^{2b}f(a+k)=(2b+1)f(f(a)+b).$$ [i]Created by Liang Xiao, Yunhao Fu[/i]

2024 Belarus Team Selection Test, 3.2

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that for any reals $x \neq y$ the following equality is true: $$f(x+y)^2=f(x+y)+f(x)+f(y)$$ [i]D. Zmiaikou[/i]

2017 Taiwan TST Round 2, 1

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$ [i]Proposed by Warut Suksompong, Thailand[/i]

1989 All Soviet Union Mathematical Olympiad, 509

$N$ is the set of positive integers. Does there exist a function $f: N \to N$ such that $f(n+1) = f( f(n) ) + f( f(n+2) )$ for all $n$?

2003 Germany Team Selection Test, 1

Find all functions $f$ from the reals to the reals such that \[f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)\] for all real $x,y$.

2014 MMATHS, 3

Let $f : R^+ \to R^+$ be a function satisfying $$f(\sqrt{x_1x_2}) =\sqrt{f(x_1)f(x_2)}$$ for all positive real numbers $x_1, x_2$. Show that $$f( \sqrt[n]{x_1x_2... x_n}) = \sqrt[n]{f(x_1)f(x_2) ... f(x_n)}$$ for all positive integers $n$ and positive real numbers $x_1, x_2,..., x_n$.

2011 ELMO Shortlist, 2

Find all functions $f:\mathbb{R}^+\to\mathbb{R}^+$ such that whenever $a>b>c>d>0$ and $ad=bc$, \[f(a+d)+f(b-c)=f(a-d)+f(b+c).\] [i]Calvin Deng.[/i]

2019 USA TSTST, 1

Find all binary operations $\diamondsuit: \mathbb R_{>0}\times \mathbb R_{>0}\to \mathbb R_{>0}$ (meaning $\diamondsuit$ takes pairs of positive real numbers to positive real numbers) such that for any real numbers $a, b, c > 0$, [list] [*] the equation $a\,\diamondsuit\, (b\,\diamondsuit \,c) = (a\,\diamondsuit \,b)\cdot c$ holds; and [*] if $a\ge 1$ then $a\,\diamondsuit\, a\ge 1$. [/list] [i]Evan Chen[/i]

1999 Austrian-Polish Competition, 3

Given an integer $n \ge 2$, find all sustems of $n$ functions$ f_1,..., f_n : R \to R$ such that for all $x,y \in R$ $$\begin{cases} f_1(x)-f_2 (x)f_2(y)+ f_1(y) = 0 \\ f_2(x^2)-f_3 (x)f_3(y)+ f_2(y^2) = 0 \\ ... \\ f_n(x^n)-f_1 (x)f_1(y)+ f_n(y^n) = 0 \end {cases}$$

2012 Poland - Second Round, 1

$f,g:\mathbb{R}\rightarrow\mathbb{R}$ find all $f,g$ satisfying $\forall x,y\in \mathbb{R}$: \[g(f(x)-y)=f(g(y))+x.\]

2019 Philippine MO, 1

Find all functions $f : R \to R$ such that $f(2xy) + f(f(x + y)) = xf(y) + yf(x) + f(x + y)$ for all real numbers $x$ and $y$.

2010 Mathcenter Contest, 6

Find all $a\in\mathbb{N}$ such that exists a bijective function $g :\mathbb{N} \to \mathbb{N}$ and a function $f:\mathbb{N}\to\mathbb{N}$, such that for all $x\in\mathbb{N}$, $$f(f(f(...f(x)))...)=g(x)+a$$ where $f$ appears $2009$ times. [i](tatari/nightmare)[/i]

2019 All-Russian Olympiad, 1

Each point $A$ in the plane is assigned a real number $f(A).$ It is known that $f(M)=f(A)+f(B)+f(C),$ whenever $M$ is the centroid of $\triangle ABC.$ Prove that $f(A)=0$ for all points $A.$

2017 Iran Team Selection Test, 3

Find all functions $f: \mathbb {R}^+ \times \mathbb {R}^+ \to \mathbb {R}^+$ that satisfy the following conditions for all positive real numbers $x,y,z:$ $$f\left ( f(x,y),z \right )=x^2y^2f(x,z)$$ $$f\left ( x,1+f(x,y) \right ) \ge x^2 + xyf(x,x)$$ [i]Proposed by Mojtaba Zare, Ali Daei Nabi[/i]

2019 Germany Team Selection Test, 1

Let $\mathbb{Q}^+$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}^+\to \mathbb{Q}^+$ satisfying$$f(x^2f(y)^2)=f(x^2)f(y)$$for all $x,y\in\mathbb{Q}^+$

2021-IMOC qualification, A2

Find all functions $f:R \to R$, such that $f(x)+f(y)=f(x+y)$, and there exists non-constant polynomials $P(x)$, $Q(x)$ such that $P(x)f(Q(x))=f(P(x)Q(x))$

1993 Poland - Second Round, 6

A continuous function $f : R \to R$ satisfies the conditions $f(1000) = 999$ and $f(x)f(f(x)) = 1$ for all real $x$. Determine $f(500)$.

1978 Austrian-Polish Competition, 1

Determine all functions $f:(0;\infty)\to \mathbb{R}$ that satisfy $$f(x+y)=f(x^2+y^2)\quad \forall x,y\in (0;\infty)$$

PEN K Problems, 4

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(f(n)))+f(f(n))+f(n)=3n.\]

2023 Brazil Team Selection Test, 4

Let $c>0$ be a given positive real and $\mathbb{R}_{>0}$ be the set of all positive reals. Find all functions $f \colon \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ such that \[f((c+1)x+f(y))=f(x+2y)+2cx \quad \textrm{for all } x,y \in \mathbb{R}_{>0}.\]

2021 Iran MO (3rd Round), 3

Polynomial $P$ with non-negative real coefficients and function $f:\mathbb{R}^+\to \mathbb{R}^+$ are given such that for all $x, y\in \mathbb{R}^+$ we have $$f(x+P(x)f(y)) = (y+1)f(x)$$ (a) Prove that $P$ has degree at most 1. (b) Find all function $f$ and non-constant polynomials $P$ satisfying the equality.

PEN K Problems, 31

Find all strictly increasing functions $f: \mathbb{N}\to \mathbb{N}$ such that \[f(f(n))=3n.\]

2023 District Olympiad, P4

Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that any real numbers $x{}$ and $y{}$ satisfy \[f(xf(x)+f(y))=f(f(x^2))+y.\]

2018 Hanoi Open Mathematics Competitions, 2

Let $f(x)$ be a polynomial such that $2f(x) + f(2 - x) = 5 + x$ for any real number x. Find the value of $f(0) + f(2)$. A. $4$ B. $0$ C.$ 2$ D. $3$ E. $1$

2003 Austrian-Polish Competition, 1

Find all real polynomials $p(x) $ such that $p(x-1)p(x+1)= p(x^2-1)$.