This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

1963 Putnam, B3

Find every twice-differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the functional equation $$ f(x)^2 -f(y)^2 =f(x+y)f(x-y)$$ for all $x,y \in \mathbb{R}. $

2012 Turkey MO (2nd round), 3

Find all non-decreasing functions from real numbers to itself such that for all real numbers $x,y$ $f(f(x^2)+y+f(y))=x^2+2f(y)$ holds.

2021 USAJMO, 1

Let $\mathbb{N}$ denote the set of positive integers. Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for positive integers $a$ and $b,$ \[f(a^2 + b^2) = f(a)f(b) \text{ and } f(a^2) = f(a)^2.\]

2013 Costa Rica - Final Round, F2

Find all functions $f:R -\{0,2\} \to R$ that satisfy for all $x \ne 0,2$ $$f(x) \cdot \left(f\left(\sqrt[3]{\frac{2+x}{2-x}}\right) \right)^2=\frac{x^3}{4}$$

2014 Belarus Team Selection Test, 2

Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that \[ m^2 + f(n) \mid mf(m) +n \] for all positive integers $m$ and $n$.

2024 USA TSTST, 6

Determine whether there exists a function $f: \mathbb{Z}_{> 0} \rightarrow \mathbb{Z}_{> 0}$ such that for all positive integers $m$ and $n$, \[f(m+nf(m))=f(n)^m+2024! \cdot m.\] [i]Jaedon Whyte[/i]

1981 IMO Shortlist, 6

Let $P(z)$ and $Q(z)$ be complex-variable polynomials, with degree not less than $1$. Let \[P_k = \{z \in \mathbb C | P(z) = k \}, Q_k = \{ z \in \mathbb C | Q(z) = k \}.\] Let also $P_0 = Q_0$ and $P_1 = Q_1$. Prove that $P(z) \equiv Q(z).$

2021 Science ON all problems, 2

Let $X$ be a set with $n\ge 2$ elements. Define $\mathcal{P}(X)$ to be the set of all subsets of $X$. Find the number of functions $f:\mathcal{P}(X)\mapsto \mathcal{P}(X)$ such that $$|f(A)\cap f(B)|=|A\cap B|$$ whenever $A$ and $B$ are two distinct subsets of $X$. [i] (Sergiu Novac)[/i]

2024 Macedonian Mathematical Olympiad, Problem 3

Determine all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ which satisfy the equation $$f(f(x+y))=f(x+y)+f(x)f(y)-xy,$$ for any two real numbers $x$ and $y$.

2011 Swedish Mathematical Competition, 6

How many functions $f:\mathbb N \to \mathbb N$ are there such that $f(0)=2011$, $f(1) = 111$, and $$f\left(\max \{x + y + 2, xy\}\right) = \min \{f (x + y), f (xy + 2)\}$$ for all non-negative integers $x$, $y$?

2012 QEDMO 11th, 11

Find all functions $f: R\to R$, such that $f (xf (y) + f (x)) = xy$ for all $x, y \in R $.

2017 Thailand TSTST, 1

Find all functions $f : Z \to Z$ satisfying $f(m + n) + f(mn -1) = f(m)f(n) + 2$ for all $m, n \in Z$.

2025 India STEMS Category C, 3

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all $x,y\in \mathbb{R}$, \[xf(y+x)+(y+x)f(y)=f(x^2+y^2)+2f(xy)\] [i]Proposed by Aritra Mondal[/i]

2020 Hong Kong TST, 1

Find all functions $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for every positive integer $n$ the following is valid: If $d_1,d_2,\ldots,d_s$ are all the positive divisors of $n$, then $$f(d_1)f(d_2)\ldots f(d_s)=n.$$

2008 Indonesia TST, 4

Find all pairs of positive integer $\alpha$ and function $f : N \to N_0$ that satisfies (i) $f(mn^2) = f(mn) + \alpha f(n)$ for all positive integers $m, n$. (ii) If $n$ is a positive integer and $p$ is a prime number with $p|n$, then $f(p) \ne 0$ and $f(p)|f(n)$.

2002 Austrian-Polish Competition, 7

Find all real functions $f$ definited on positive integers and satisying: (a) $f(x+22)=f(x)$, (b) $f\left(x^{2}y\right)=\left(f(x)\right)^{2}f(y)$ for all positive integers $x$ and $y$.

1987 IMO, 1

Prove that there is no function $f$ from the set of non-negative integers into itself such that $f(f(n))=n+1987$ for all $n$.

1998 Baltic Way, 7

Let $\mathbb{R}$ be the set of all real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying for all $x,y\in\mathbb{R}$ the equation $f(x)+f(y)=f(f(x)f(y))$.

2022 Saudi Arabia BMO + EGMO TST, 2.4

Consider the function $f : R^+ \to R^+$ and satisfying $$f(x + 2y + f(x + y)) = f(2x) + f(3y), \,\, \forall \,\, x, y > 0.$$ 1. Find all functions $f(x)$ that satisfy the given condition. 2. Suppose that $f(4\sin^4x)f(4\cos^4x) \ge f^2(1)$ for all $x \in \left(0\frac{\pi}{2}\right) $. Find the minimum value of $f(2022)$.

2000 Brazil Team Selection Test, Problem 2

Find all functions $f:\mathbb R\to\mathbb R$ such that (i) $f(0)=1$; (ii) $f(x+f(y))=f(x+y)+1$ for all real $x,y$; (iii) there is a rational non-integer $x_0$ such that $f(x_0)$ is an integer.

2017-IMOC, N3

Find all functions $f:\mathbb N\to\mathbb N_0$ such that for all $m,n\in\mathbb N$, \begin{align*} f(mn)&=f(m)f(n)\\ f(m+n)&=\min(f(m),f(n))\qquad\text{if }f(m)\ne f(n)\end{align*}

1992 IMO Shortlist, 9

Let $ f(x)$ be a polynomial with rational coefficients and $ \alpha$ be a real number such that \[ \alpha^3 \minus{} \alpha \equal{} [f(\alpha)]^3 \minus{} f(\alpha) \equal{} 33^{1992}.\] Prove that for each $ n \geq 1,$ \[ \left [ f^{n}(\alpha) \right]^3 \minus{} f^{n}(\alpha) \equal{} 33^{1992},\] where $ f^{n}(x) \equal{} f(f(\cdots f(x))),$ and $ n$ is a positive integer.

2022 USEMO, 6

Find all positive integers $k$ for which there exists a nonlinear function $f:\mathbb{Z} \rightarrow\mathbb{Z}$ such that the equation $$f(a)+f(b)+f(c)=\frac{f(a-b)+f(b-c)+f(c-a)}{k}$$ holds for any integers $a,b,c$ satisfying $a+b+c=0$ (not necessarily distinct). [i]Evan Chen[/i]

2012 Belarus Team Selection Test, 3

Find all functions $f : Q \to Q$, such that $$f(x + f (y + f(z))) = y + f(x + z)$$ for all $x ,y ,z \in Q$ . (I. Voronovich)

2006 QEDMO 2nd, 13

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for any two reals $x$ and $y$, we have $f\left( f\left( x+y\right) \right) +xy=f\left( x+y\right) +f\left( x\right) f\left( y\right) $.