This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2020 Federal Competition For Advanced Students, P2, 4

Determine all functions $f: \mathbb{R} \to \mathbb{R}$, such that $$f(xf(y)+1)=y+f(f(x)f(y))$$ for all $x, y \in \mathbb{R}$. (Theresia Eisenkölbl)

1990 Vietnam National Olympiad, 2

Suppose $ f(x)\equal{}a_0x^n\plus{}a_1x^{n\minus{}1}\plus{}\ldots\plus{}a_{n\minus{}1}x\plus{}a_n$ ($ a_0\neq 0$) is a polynomial with real coefficients satisfying $ f(x)f(2x^2) \equal{} f(2x^3 \plus{} x)$ for all $ x \in\mathbb{R}$. Prove that $ f(x)$ has no real roots.

2016 Brazil Team Selection Test, 2

Determine all functions $f:\mathbb{Z}\rightarrow\mathbb{Z}$ with the property that \[f(x-f(y))=f(f(x))-f(y)-1\] holds for all $x,y\in\mathbb{Z}$.

PEN K Problems, 34

Show that there exists a bijective function $ f: \mathbb{N}_{0}\to \mathbb{N}_{0}$ such that for all $ m,n\in \mathbb{N}_{0}$: \[ f(3mn+m+n)=4f(m)f(n)+f(m)+f(n). \]

KoMaL A Problems 2019/2020, A. 765

Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following equality for all $x,y\in\mathbb{R}$ \[f(x)f(y)-f(x-1)-f(y+1)=f(xy)+2x-2y-4.\][i]Proposed by Dániel Dobák, Budapest[/i]

2022 Switzerland - Final Round, 3

Let $N$ be the set of positive integers. Find all functions $f : N \to N$ such that both $\bullet$ $f(f(m)f(n)) = mn$ $\bullet$ $f(2022a + 1) = 2022a + 1$ hold for all positive integers $m, n$ and $a$.

2020 Caucasus Mathematical Olympiad, 4

Find all functions $f : \mathbb{N}\rightarrow{\mathbb{N}}$ such that for all positive integers $m$ and $n$ the number $f(m)+n-m$ is divisible by $f(n)$.

2017 239 Open Mathematical Olympiad, 3

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that for all real number $x,y$, $$(y+1)f(yf(x))=yf(x(y+1)).$$

2021 Taiwan TST Round 3, 4

Find all functions $f : \mathbb{Z}\rightarrow \mathbb{Z}$ satisfying \[f^{a^{2} + b^{2}}(a+b) = af(a) +bf(b)\] for all integers $a$ and $b$

2017 Costa Rica - Final Round, F1

Let $f: Z ^+ \to R$, such that $f (1) = 2018$ and $f (1) + f (2) + ...+ f (n) = n^2f (n)$, for all $n> 1$. Find the value $f (2017)$.

2008 Peru IMO TST, 2

Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that $$ f(2f(x) + y) = f(f(x) - f(y)) + 2y + x, $$ for all $x,y \in \mathbb{R}.$

2016 Bundeswettbewerb Mathematik, 3

Find all functions $f$ that is defined on all reals but $\tfrac13$ and $- \tfrac13$ and satisfies \[ f \left(\frac{x+1}{1-3x} \right) + f(x) = x \] for all $x \in \mathbb{R} \setminus \{ \pm \tfrac13 \}$.

2020 Thailand TST, 3

Let $\mathbb Z$ be the set of integers. We consider functions $f :\mathbb Z\to\mathbb Z$ satisfying \[f\left(f(x+y)+y\right)=f\left(f(x)+y\right)\] for all integers $x$ and $y$. For such a function, we say that an integer $v$ is [i]f-rare[/i] if the set \[X_v=\{x\in\mathbb Z:f(x)=v\}\] is finite and nonempty. (a) Prove that there exists such a function $f$ for which there is an $f$-rare integer. (b) Prove that no such function $f$ can have more than one $f$-rare integer. [i]Netherlands[/i]

2018-IMOC, N2

Find all functions $f:\mathbb N\to\mathbb N$ satisfying $$\operatorname{lcm}(f(x),y)\gcd(f(x),f(y))=f(x)f(f(y))$$ for all $x,y\in\mathbb N$.

2006 Italy TST, 3

Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that for all integers $m,n$, \[f(m - n + f(n)) = f(m) + f(n).\]

2014 NIMO Problems, 6

Let $P(x)$ be a polynomial with real coefficients such that $P(12)=20$ and \[ (x-1) \cdot P(16x)= (8x-1) \cdot P(8x) \] holds for all real numbers $x$. Compute the remainder when $P(2014)$ is divided by $1000$. [i]Proposed by Alex Gu[/i]

1992 IMO Longlists, 26

Let $\,{\mathbb{R}}\,$ denote the set of all real numbers. Find all functions $\,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\,$ such that \[ f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}. \]

1979 IMO Longlists, 10

Find all polynomials $f(x)$ with real coefficients for which \[f(x)f(2x^2) = f(2x^3 + x).\]

2001 IMO Shortlist, 4

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfying \[ f(xy)(f(x) - f(y)) = (x-y)f(x)f(y) \] for all $x,y$.

1983 Canada National Olympiad, 2

For each $r\in\mathbb{R}$ let $T_r$ be the transformation of the plane that takes the point $(x, y)$ into the point $(2^r x; r2^r x+2^r y)$. Let $F$ be the family of all such transformations (i.e. $F = \{T_r : r\in\mathbb{R}\}$). Find all curves $y = f(x)$ whose graphs remain unchanged by every transformation in $F$.

I Soros Olympiad 1994-95 (Rus + Ukr), 10.6

Find all functions $f:R\to R$ such that for any real $x, y$ , $$f(x+2^y)=f(2^x)+f(y)$$

2025 Spain Mathematical Olympiad, 6

Let $\mathbb{R}_{\neq 0}$ be the set of nonzero real numbers. Find all functions $f:\mathbb{R}_{\neq 0}\rightarrow\mathbb{R}_{\neq 0}$ such that, for all $x,y\in\mathbb{R}_{\neq 0}$, \[(x-y)f(y^2)+f\left(xy\,f\left(\frac{x^2}{y}\right)\right)=f(y^2f(y)).\]

2019 ELMO Shortlist, A4

Find all nondecreasing functions $f:\mathbb R\to \mathbb R$ such that, for all $x,y\in \mathbb R$, $$f(f(x))+f(y)=f(x+f(y))+1.$$ [i]Proposed by Carl Schildkraut[/i]

2004 Olympic Revenge, 4

Find all functions $f:R \rightarrow R$ such that for any reals $x,y$, $f(x^2+y)=f(x)f(x+1)+f(y)+2x^2y$.

2011 Greece Team Selection Test, 3

Find all functions $f,g: \mathbb{Q}\to \mathbb{Q}$ such that the following two conditions hold: $$f(g(x)-g(y))=f(g(x))-y \ \ (1)$$ $$g(f(x)-f(y))=g(f(x))-y\ \ (2)$$ for all $x,y \in \mathbb{Q}$.