This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2005 India IMO Training Camp, 2

Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying \[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\] for any two positive integers $ m$ and $ n$. [i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers: $ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$. By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$). [i]Proposed by Mohsen Jamali, Iran[/i]

2021 Romania National Olympiad, 4

Determine all nonzero integers $a$ for which there exists two functions $f,g:\mathbb Q\to\mathbb Q$ such that \[f(x+g(y))=g(x)+f(y)+ay\text{ for all } x,y\in\mathbb Q.\] Also, determine all pairs of functions with this property. [i]Vasile Pop[/i]

1988 IMO Shortlist, 26

A function $ f$ defined on the positive integers (and taking positive integers values) is given by: $ \begin{matrix} f(1) \equal{} 1, f(3) \equal{} 3 \\ f(2 \cdot n) \equal{} f(n) \\ f(4 \cdot n \plus{} 1) \equal{} 2 \cdot f(2 \cdot n \plus{} 1) \minus{} f(n) \\ f(4 \cdot n \plus{} 3) \equal{} 3 \cdot f(2 \cdot n \plus{} 1) \minus{} 2 \cdot f(n), \end{matrix}$ for all positive integers $ n.$ Determine with proof the number of positive integers $ \leq 1988$ for which $ f(n) \equal{} n.$

2019 Taiwan TST Round 2, 1

Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$

2020 European Mathematical Cup, 4

Let $\mathbb{R^+}$ denote the set of all positive real numbers. Find all functions $f: \mathbb{R^+}\rightarrow \mathbb{R^+}$ such that $$xf(x + y) + f(xf(y) + 1) = f(xf(x))$$ for all $x, y \in\mathbb{R^+}.$ [i]Proposed by Amadej Kristjan Kocbek, Jakob Jurij Snoj[/i]

1968 IMO Shortlist, 26

Let $f$ be a real-valued function defined for all real numbers, such that for some $a>0$ we have \[ f(x+a)={1\over2}+\sqrt{f(x)-f(x)^2} \] for all $x$. Prove that $f$ is periodic, and give an example of such a non-constant $f$ for $a=1$.

2017 Estonia Team Selection Test, 11

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$ [i]Proposed by Warut Suksompong, Thailand[/i]

2024 Philippine Math Olympiad, P1

Let $f:\mathbb{Z}^2\rightarrow\mathbb{Z}$ be a function satisfying \[f(x+1,y)+f(x,y+1)+1=f(x,y)+f(x+1,y+1)\] for all integers $x$ and $y$. Can it happen that $|f(x,y)|\leq 2024$ for all $x,y\in\mathbb{Z}$?

2007 Balkan MO, 2

Find all real functions $f$ defined on $ \mathbb R$, such that \[f(f(x)+y) = f(f(x)-y)+4f(x)y ,\] for all real numbers $x,y$.

2024 South Africa National Olympiad, 4

Find all functions $f$ from integers to integers such that \[ f(m+n) + f(m-n) - 2f(m) = 6mn^2\] for all integers $m$ and $n$.

2024 TASIMO, 5

Find all functions $f: \mathbb{Z^+} \to \mathbb{Z^+}$ such that for all integers $a, b, c$ we have $$ af(bc)+bf(ac)+cf(ab)=(a+b+c)f(ab+bc+ac). $$ [i]Note. The set $\mathbb{Z^+}$ refers to the set of positive integers.[/i] [i]Proposed by Mojtaba Zare, Iran[/i]

1999 Poland - Second Round, 5

Let $S = \{1,2,3,4,5\}$. Find the number of functions $f : S \to S$ such that $f ^{50}(x)= x$ for all $x \in S$.

2019-IMOC, A1

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all $x,y\in\mathbb{R}$, $$f(xy+f(x))=f(xf(y))+x$$

2022 Iran MO (3rd Round), 2

Find all functions $f:\mathbb{N}\to\mathbb{N}$ such that for all $x,y\in\mathbb{N}$: $$0\le y+f(x)-f^{f(y)}(x)\le1$$ that here $$f^n(x)=\underbrace{f(f(\ldots(f}_{n}(x))\ldots)$$

2016 Brazil Undergrad MO, 2

Find all functions \(f:\mathbb{R} \rightarrow \mathbb{R}\) such that \[ f(x^2+y^2f(x)) = xf(y)^2-f(x)^2 \] for every \(x, y \in \mathbb{R}\)

2017 IFYM, Sozopol, 5

$f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that for $\forall x,y\in \mathbb{R}$ the equation $f(xy+x+y)=f(xy)+f(x)+f(y)$ is true. Prove that $f(x+y)=f(x)+f(y)$ for $\forall$ $x,y\in \mathbb{R}$.

2011 Baltic Way, 2

Let $f:\mathbb{Z}\to\mathbb{Z}$ be a function such that for all integers $x$ and $y$, the following holds: \[f(f(x)-y)=f(y)-f(f(x)).\] Show that $f$ is bounded.

2024 Middle European Mathematical Olympiad, 2

Find all functions $f:\mathbb{R} \to \mathbb{R}$ such that \[yf(x+1)=f(x+y-f(x))+f(x)f(f(y))\] for all $x,y \in \mathbb{R}$.

2020 Estonia Team Selection Test, 3

Find all functions $f :R \to R$ such that for all real numbers $x$ and $y$ $$f(x^3+y^3)=f(x^3)+3x^3f(x)f(y)+3f(x)(f(y))^2+y^6f(y)$$

1979 IMO Shortlist, 26

Prove that the functional equations \[f(x + y) = f(x) + f(y),\] \[ \text{and} \qquad f(x + y + xy) = f(x) + f(y) + f(xy) \quad (x, y \in \mathbb R)\] are equivalent.

PEN K Problems, 7

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(n))+f(n)=2n+2001 \text{ or }2n+2002.\]

PEN K Problems, 1

Prove that there is a function $f$ from the set of all natural numbers into itself such that $f(f(n))=n^2$ for all $n \in \mathbb{N}$.

2003 Germany Team Selection Test, 1

Find all functions $f$ from the reals to the reals such that \[f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)\] for all real $x,y$.

1994 IMO Shortlist, 5

Let $ f(x) \equal{} \frac{x^2\plus{}1}{2x}$ for $ x \neq 0.$ Define $ f^{(0)}(x) \equal{} x$ and $ f^{(n)}(x) \equal{} f(f^{(n\minus{}1)}(x))$ for all positive integers $ n$ and $ x \neq 0.$ Prove that for all non-negative integers $ n$ and $ x \neq \{\minus{}1,0,1\}$ \[ \frac{f^{(n)}(x)}{f^{(n\plus{}1)}(x)} \equal{} 1 \plus{} \frac{1}{f \left( \left( \frac{x\plus{}1}{x\minus{}1} \right)^{2n} \right)}.\]

2000 IMO Shortlist, 4

The function $ F$ is defined on the set of nonnegative integers and takes nonnegative integer values satisfying the following conditions: for every $ n \geq 0,$ (i) $ F(4n) \equal{} F(2n) \plus{} F(n),$ (ii) $ F(4n \plus{} 2) \equal{} F(4n) \plus{} 1,$ (iii) $ F(2n \plus{} 1) \equal{} F(2n) \plus{} 1.$ Prove that for each positive integer $ m,$ the number of integers $ n$ with $ 0 \leq n < 2^m$ and $ F(4n) \equal{} F(3n)$ is $ F(2^{m \plus{} 1}).$