This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 52

2015 CHMMC (Fall), 1

Call a positive integer $x$ $n$-[i]cube-invariant[/i] if the last $n$ digits of $x$ are equal to the last $n$ digits of $x^3$. For example, $1$ is $n$-cube invariant for any integer $n$. How many $2015$-cube-invariant numbers $x$ are there such that $x < 10^{2015}$?

2019 Hanoi Open Mathematics Competitions, 2

What is the last digit of $4^{3^{2019}}$? [b]A.[/b] $0$ [b]B.[/b] $2$ [b]C.[/b] $4$ [b]D.[/b] $6$ [b]E.[/b] $8$