Found problems: 48
2019 District Olympiad, 3
Let $n$ be an odd natural number and $A,B \in \mathcal{M}_n(\mathbb{C})$ be two matrices such that $(A-B)^2=O_n.$ Prove that $\det(AB-BA)=0.$
2015 IMC, 1
For any integer $n\ge 2$ and two $n\times n$ matrices with real
entries $A,\; B$ that satisfy the equation
$$A^{-1}+B^{-1}=(A+B)^{-1}\;$$
prove that $\det (A)=\det(B)$.
Does the same conclusion follow for matrices with complex entries?
(Proposed by Zbigniew Skoczylas, Wroclaw University of Technology)
2022 SEEMOUS, 1
Let $A, B \in \mathcal{M}_n(\mathbb{C})$ be such that $AB^2A = AB$. Prove that:
a) $(AB)^2 = AB.$
b) $(AB - BA)^3 = O_n.$
1987 Traian Lălescu, 1.2
Let be a natural number $ n, $ a complex number $ a, $ and two matrices $ \left( a_{pq}\right)_{1\le q\le n}^{1\le p\le n} ,\left( b_{pq}\right)_{1\le q\le n}^{1\le p\le n}\in\mathcal{M}_n(\mathbb{C} ) $ such that
$$ b_{pq} =a^{p-q}\cdot a_{pq},\quad\forall p,q\in\{ 1,2,\ldots ,n\} . $$
Calculate the determinant of $ B $ (in function of $ a $ and the determinant of $ A $ ).
1996 Romania National Olympiad, 4
Let $A,B,C,D \in \mathcal{M}_n(\mathbb{C}),$ $A$ and $C$ invertible. Prove that if $A^k B = C^k D$ for any positive integer $k,$ then $B=D.$
2019 LIMIT Category C, Problem 10
Let $A\in M_3(\mathbb Z)$ such that $\det(A)=1$. What is the maximum possible number of entries of $A$ that are even?
2022 Romania National Olympiad, P4
Let $A,B\in\mathcal{M}_n(\mathbb{C})$ such that $A^2+B^2=2AB.$ Prove that for any complex number $x$\[\det(A-xI_n)=\det(B-xI_n).\][i]Mihai Opincariu and Vasile Pop[/i]
2017 Simon Marais Mathematical Competition, A3
For each positive integer $n$, let $M(n)$ be the $n\times n$ matrix whose $(i,j)$ entry is equal to $1$ if $i+1$ is divisible by $j$, and equal to $0$ otherwise. Prove that $M(n)$ is invertible if and only if $n+1$ is square-free. (An integer is [i]square-free[/i] if it is not divisible by a square of an integer larger than $1$.)
2006 Cezar Ivănescu, 2
Prove that the set $ \left\{ \left. \begin{pmatrix} \frac{1-2x^3}{3x^2} & \frac{1+x^3}{3x^2} & \frac{1+x^3}{3x^2} \\ \frac{1+x^3}{3x^2} & \frac{1-2x^3}{3x^2} & \frac{1+x^3}{3x^2} \\ \frac{1+x^3}{3x^2} & \frac{1+x^3}{3x^2} & \frac{1-2x^3}{3x^2}\end{pmatrix}\right| x\in\mathbb{R}^{*} \right\} $ along with the usual multiplication of matrices form a group, determine an isomorphism between this group and the group of multiplicative real numbers.
1972 Spain Mathematical Olympiad, 1
Let $K$ be a ring with unit and $M$ the set of $2 \times 2$ matrices constituted with elements of $K$. An addition and a multiplication are defined in $M$ in the usual way between arrays. It is requested to:
a) Check that $M$ is a ring with unit and not commutative with respect to the laws of defined composition.
b) Check that if $K$ is a commutative field, the elements of$ M$ that have inverse they are characterized by the condition $ad - bc \ne 0$.
c) Prove that the subset of $M$ formed by the elements that have inverse is a multiplicative group.
2004 Spain Mathematical Olympiad, Problem 1
We have a set of ${221}$ real numbers whose sum is ${110721}$. It is deemed that the numbers form a rectangular table such that every row as well as the first and last columns are arithmetic progressions of more than one element. Prove that the sum of the elements in the four corners is equal to ${2004}$.
2015 IMC, 9
An $n \times n$ complex matrix $A$ is called \emph{t-normal} if
$AA^t = A^t A$ where $A^t$ is the transpose of $A$. For each $n$,
determine the maximum dimension of a linear space of complex $n
\times n$ matrices consisting of t-normal matrices.
Proposed by Shachar Carmeli, Weizmann Institute of Science
2016 District Olympiad, 1
Let $ A\in M_2\left( \mathbb{C}\right) $ such that $ \det \left( A^2+A+I_2\right) =\det \left( A^2-A+I_2\right) =3. $
Prove that $ A^2\left( A^2+I_2\right) =2I_2. $
1985 Traian Lălescu, 1.3
Let be two matrices $ A,B\in M_2\left(\mathbb{R}\right) $ and two natural numbers $ m,n. $ Prove that:
$$ \det\left( (AB)^m-(BA)^m\right)\cdot\det\left( (AB)^n-(BA)^n\right)\ge 0. $$
2016 IMC, 2
Let $k$ and $n$ be positive integers. A sequence $\left( A_1, \dots , A_k \right)$ of $n\times n$ real matrices is [i]preferred[/i] by Ivan the Confessor if $A_i^2\neq 0$ for $1\le i\le k$, but $A_iA_j=0$ for $1\le i$, $j\le k$ with $i\neq j$. Show that $k\le n$ in all preferred sequences, and give an example of a preferred sequence with $k=n$ for each $n$.
(Proposed by Fedor Petrov, St. Petersburg State University)
2015 VTRMC, Problem 3
Let $(a_i)_{1\le i\le2015}$ be a sequence consisting of $2015$ integers, and let $(k_i)_{1\le i\le2015}$ be a sequence of $2015$ positive integers (positive integer excludes $0$). Let
$$A=\begin{pmatrix}a_1^{k_1}&a_1^{k_2}&\cdots&a_1^{k_{2015}}\\a_2^{k_1}&a_2^{k_2}&\cdots&a_2^{k_{2015}}\\\vdots&\vdots&\ddots&\vdots\\a_{2015}^{k_1}&a_{2015}^{k_2}&\cdots&a_{2015}^{k_{2015}}\end{pmatrix}.$$Prove that $2015!$ divides $\det A$.
2000 Romania National Olympiad, 1
Let $ \mathcal{M} =\left\{ A\in M_2\left( \mathbb{C}\right)\big| \det\left( A-zI_2\right) =0\implies |z| < 1\right\} . $ Prove that:
$$ X,Y\in\mathcal{M}\wedge X\cdot Y=Y\cdot X\implies X\cdot Y\in\mathcal{M} . $$
2019 LIMIT Category C, Problem 9
$P\in A_n(\mathbb R)=\{M_{n\times n}|M^2=M\}$. Which of the following are true?
$\textbf{(A)}~P^T=P,\forall P\in A_n(\mathbb R)$
$\textbf{(B)}~\exists P\ne0,P\in A_n(\mathbb R)\text{ with }\operatorname{tr}(P)=0$
$\textbf{(C)}~\exists X_{n\times r}\text{ such that }Px=X\text{ for }r=\operatorname{rank}(P)$
2024 VJIMC, 2
Here is a problem we (me and my colleagues) suggested and was given at the competition this year. The problem statement is very natural and short. However, we have not seen such a problem before.
A real $2024 \times 2024$ matrix $A$ is called nice if $(Av, v) = 1$ for every vector $v\in \mathbb{R}^{2024}$ with unit norm.
a) Prove that the only nice matrix such that all of its eigenvalues are real is the identity matrix.
b) Find an example of a nice non-identity matrix
2024 IMC, 7
Let $n$ be a positive integer. Suppose that $A$ and $B$ are invertible $n \times n$ matrices with complex entries such that $A+B=I$ (where $I$ is the identity matrix) and
\[(A^2+B^2)(A^4+B^4)=A^5+B^5.\]
Find all possible values of $\det(AB)$ for the given $n$.
2018 Romania National Olympiad, 4
Let $n$ be an integer with $n \geq 2$ and let $A \in \mathcal{M}_n(\mathbb{C})$ such that $\operatorname{rank} A \neq \operatorname{rank} A^2.$ Prove that there exists a nonzero matrix $B \in \mathcal{M}_n(\mathbb{C})$ such that $$AB=BA=B^2=0$$
[i]Cornel Delasava[/i]
2014 VTRMC, Problem 6
Let $S$ denote the set of $2$ by $2$ matrices with integer entries and determinant $1$, and let $T$ denote those matrices of $S$ which are congruent to the identity matrix $I\pmod3$ (so $\begin{pmatrix}a&b\\c&d\end{pmatrix}\in T$ means that $a,b,c,d\in\mathbb Z,ad-bc=1,$ and $3$ divides $b,c,a-1,d-1$).
(a) Let $f:T\to\mathbb R$ be a function such that for every $X,Y\in T$ with $Y\ne I$, either $f(XY)>f(X)$ or $f(XY^{-1})>f(X)$. Show that given two finite nonempty subsets $A,B$ of $T$, there are matrices $a\in A$ and $b\in B$ such that if $a'\in A$, $b'\in B$ and $a'b'=ab$, then $a'=a$ and $b'=b$.
(b) Show that there is no $f:S\to\mathbb R$ such that for every $X,Y\in S$ with $Y\ne\pm I$, either $f(XY)>f(X)$ or $f(XY^{-1})>f(X)$.
2015 VJIMC, 1
[b]Problem 1 [/b]
Let $A$ and $B$ be two $3 \times 3$ matrices with real entries. Prove that
$$ A-(A^{-1} +(B^{-1}-A)^{-1})^{-1} =ABA\ , $$
provided all the inverses appearing on the left-hand side of the equality exist.