This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 48

2014 VTRMC, Problem 6

Let $S$ denote the set of $2$ by $2$ matrices with integer entries and determinant $1$, and let $T$ denote those matrices of $S$ which are congruent to the identity matrix $I\pmod3$ (so $\begin{pmatrix}a&b\\c&d\end{pmatrix}\in T$ means that $a,b,c,d\in\mathbb Z,ad-bc=1,$ and $3$ divides $b,c,a-1,d-1$). (a) Let $f:T\to\mathbb R$ be a function such that for every $X,Y\in T$ with $Y\ne I$, either $f(XY)>f(X)$ or $f(XY^{-1})>f(X)$. Show that given two finite nonempty subsets $A,B$ of $T$, there are matrices $a\in A$ and $b\in B$ such that if $a'\in A$, $b'\in B$ and $a'b'=ab$, then $a'=a$ and $b'=b$. (b) Show that there is no $f:S\to\mathbb R$ such that for every $X,Y\in S$ with $Y\ne\pm I$, either $f(XY)>f(X)$ or $f(XY^{-1})>f(X)$.

1985 Traian Lălescu, 1.3

Let be two matrices $ A,B\in M_2\left(\mathbb{R}\right) $ and two natural numbers $ m,n. $ Prove that: $$ \det\left( (AB)^m-(BA)^m\right)\cdot\det\left( (AB)^n-(BA)^n\right)\ge 0. $$

2022 SEEMOUS, 1

Let $A, B \in \mathcal{M}_n(\mathbb{C})$ be such that $AB^2A = AB$. Prove that: a) $(AB)^2 = AB.$ b) $(AB - BA)^3 = O_n.$

2023 Miklós Schweitzer, 10

Let $n\geqslant2$ be a natural number. Show that there is no real number $c{}$ for which \[\exp\left(\frac{T+S}{2}\right)\leqslant c\cdot \frac{\exp(T)+\exp(S)}{2}\]is satisfied for any self-adjoint $n\times n$ complex matrices $T{}$ and $S{}$. (If $A{}$ and $B{}$ are self-adjoint $n\times n$ matrices, $A\leqslant B$ means that $B-A$ is positive semi-definite.)

2021 Alibaba Global Math Competition, 3

Given positive integers $k \ge 2$ and $m$ sufficiently large. Let $\mathcal{F}_m$ be the infinite family of all the (not necessarily square) binary matrices which contain exactly $m$ 1's. Denote by $f(m)$ the maximum integer $L$ such that for every matrix $A \in \mathcal{F}_m$, there always exists a binary matrix $B$ of the same dimension such that (1) $B$ has at least $L$ 1-entries; (2) every entry of $B$ is less or equal to the corresponding entry of $A$; (3) $B$ does not contain any $k \times k$ all-1 submatrix. Show the equality \[\lim_{m \to \infty} \frac{\ln f(m)}{\ln m}=\frac{k}{k+1}.\]

ICMC 4, 2

Let \(A\) be a square matrix with entries in the field \(\mathbb Z / p \mathbb Z\) such that \(A^n - I\) is invertible for every positive integer \(n\). Prove that there exists a positive integer \(m\) such that \(A^m = 0\). [i](A matrix having entries in the field \(\mathbb Z / p \mathbb Z\) means that two matrices are considered the same if each pair of corresponding entries differ by a multiple of \(p\).)[/i] [i]Proposed by Tony Wang[/i]

2012 Mathcenter Contest + Longlist, 1 sl8

For matrices $A=[a_{ij}]_{m \times m}$ and $B=[b_{ij}]_{m \times m}$ where $A,B \in \mathbb{Z} ^{m \times m}$ let $A \equiv B \pmod{n}$ only if $a_{ij} \equiv b_{ij} \pmod{n}$ for every $i,j \in \{ 1,2,...,m \}$, that's $A-B=nZ$ for some $Z \in \mathbb{Z}^{m \times m}$. (The symbol $A \in \mathbb{Z} ^{m \times m}$ means that every element in $A$ is an integer.) Prove that for $A \in \mathbb{Z} ^{m \times m}$ there is $B \in \mathbb{Z} ^{m \times m}$ , where $AB \equiv I \pmod{n }$ only if $(\det (A),n)=1$ and find the value of $B$ in the form of $A$ where $I$ represents the dimensional identity matrix $m \times m$. [i](PP-nine)[/i]

2024 Mexican University Math Olympiad, 2

Let \( A \) and \( B \) be two square matrices with complex entries such that \( A + B = AB \), \( A = A^* \), and \( A \) has all distinct eigenvalues. Prove that there exists a polynomial \( P \) with complex coefficients such that \( P(A) = B \).

2013 Bogdan Stan, 3

Let be four $ n\times n $ real matrices $ A,B,C,D $ having the property that $ C+D\sqrt{-1} $ is the inverse of $ A+B\sqrt{-1} . $ Show that $ \left| \det\left( A+B\sqrt{-1} \right) \right|^2\cdot\left| \det C \right| =\det A. $ [i]Vasile Pop[/i]

2019 Korea USCM, 8

$M_n(\mathbb{C})$ is the vector space of all complex $n\times n$ matrices. Given a linear map $T:M_n(\mathbb{C})\to M_n(\mathbb{C})$ s.t. $\det (A)=\det(T(A))$ for every $A\in M_n(\mathbb{C})$. (1) If $T(A)$ is the zero matrix, then show that $A$ is also the zero matrix. (2) Prove that $\text{rank} (A)=\text{rank} (T(A))$ for any $A\in M_n(\mathbb{C})$.

2019 LIMIT Category C, Problem 7

Let $O(4,\mathbb Z)$ be the set of all $4\times4$ orthogonal matrices over $\mathbb Z$, i.e., $A^tA=I=AA^t$. Then $|O(4,\mathbb Z)|$ is

1986 Traian Lălescu, 2.1

Show that for any natural numbers $ m,n\ge 3, $ the equation $ \Delta_n (x)=0 $ has exactly two distinct solutions, where $$ \Delta_n (x)=\begin{vmatrix}1 & 1-m & 1-m & \cdots & 1-m & 1-m & -m \\ -1 & \binom{m}{x} & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & \binom{m}{x} & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & -1 & \binom{m}{x} & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & \binom{m}{x}\end{vmatrix} . $$

1987 Traian Lălescu, 1.2

Let be a natural number $ n, $ a complex number $ a, $ and two matrices $ \left( a_{pq}\right)_{1\le q\le n}^{1\le p\le n} ,\left( b_{pq}\right)_{1\le q\le n}^{1\le p\le n}\in\mathcal{M}_n(\mathbb{C} ) $ such that $$ b_{pq} =a^{p-q}\cdot a_{pq},\quad\forall p,q\in\{ 1,2,\ldots ,n\} . $$ Calculate the determinant of $ B $ (in function of $ a $ and the determinant of $ A $ ).

2015 VTRMC, Problem 3

Let $(a_i)_{1\le i\le2015}$ be a sequence consisting of $2015$ integers, and let $(k_i)_{1\le i\le2015}$ be a sequence of $2015$ positive integers (positive integer excludes $0$). Let $$A=\begin{pmatrix}a_1^{k_1}&a_1^{k_2}&\cdots&a_1^{k_{2015}}\\a_2^{k_1}&a_2^{k_2}&\cdots&a_2^{k_{2015}}\\\vdots&\vdots&\ddots&\vdots\\a_{2015}^{k_1}&a_{2015}^{k_2}&\cdots&a_{2015}^{k_{2015}}\end{pmatrix}.$$Prove that $2015!$ divides $\det A$.

2019 LIMIT Category C, Problem 9

$P\in A_n(\mathbb R)=\{M_{n\times n}|M^2=M\}$. Which of the following are true? $\textbf{(A)}~P^T=P,\forall P\in A_n(\mathbb R)$ $\textbf{(B)}~\exists P\ne0,P\in A_n(\mathbb R)\text{ with }\operatorname{tr}(P)=0$ $\textbf{(C)}~\exists X_{n\times r}\text{ such that }Px=X\text{ for }r=\operatorname{rank}(P)$

2016 IMC, 2

Let $k$ and $n$ be positive integers. A sequence $\left( A_1, \dots , A_k \right)$ of $n\times n$ real matrices is [i]preferred[/i] by Ivan the Confessor if $A_i^2\neq 0$ for $1\le i\le k$, but $A_iA_j=0$ for $1\le i$, $j\le k$ with $i\neq j$. Show that $k\le n$ in all preferred sequences, and give an example of a preferred sequence with $k=n$ for each $n$. (Proposed by Fedor Petrov, St. Petersburg State University)

2006 Cezar Ivănescu, 2

Prove that the set $ \left\{ \left. \begin{pmatrix} \frac{1-2x^3}{3x^2} & \frac{1+x^3}{3x^2} & \frac{1+x^3}{3x^2} \\ \frac{1+x^3}{3x^2} & \frac{1-2x^3}{3x^2} & \frac{1+x^3}{3x^2} \\ \frac{1+x^3}{3x^2} & \frac{1+x^3}{3x^2} & \frac{1-2x^3}{3x^2}\end{pmatrix}\right| x\in\mathbb{R}^{*} \right\} $ along with the usual multiplication of matrices form a group, determine an isomorphism between this group and the group of multiplicative real numbers.

2024 OMpD, 2

Let \( n \) be a positive integer, and let \( A \) and \( B \) be \( n \times n \) matrices with real coefficients such that \[ ABBA - BAAB = A - B. \] (a) Prove that \( \text{Tr}(A) = \text{Tr}(B) \) and that \( \text{Tr}(A^2) = \text{Tr}(B^2) \). (b) If \(BA^2B= A^2B^2\) and \(AB^2A= B^2A^2\), prove that \( \det A = \det B \). Note: \( \text{Tr}(X) \) denotes the trace of \( X \), which is the sum of the elements on its main diagonal, and \( \det X \) denotes the determinant of \( X \).

2022 Romania National Olympiad, P4

Let $A,B\in\mathcal{M}_n(\mathbb{C})$ such that $A^2+B^2=2AB.$ Prove that for any complex number $x$\[\det(A-xI_n)=\det(B-xI_n).\][i]Mihai Opincariu and Vasile Pop[/i]

2015 District Olympiad, 2

Let be two matrices $ A,B\in M_2\left(\mathbb{R}\right) $ that satisfy the equality $ \left( A-B\right)^2 =O_2. $ [b]a)[/b] Show that $ \det\left( A^2-B^2\right) =\left( \det A -\det B\right)^2. $ [b]b)[/b] Demonstrate that $ \det\left( AB-BA\right) =0\iff \det A=\det B. $

2000 Romania National Olympiad, 1

Let $ \mathcal{M} =\left\{ A\in M_2\left( \mathbb{C}\right)\big| \det\left( A-zI_2\right) =0\implies |z| < 1\right\} . $ Prove that: $$ X,Y\in\mathcal{M}\wedge X\cdot Y=Y\cdot X\implies X\cdot Y\in\mathcal{M} . $$

1976 Spain Mathematical Olympiad, 6

Given a square matrix $M$ of order $n$ over the field of numbers real, find, as a function of $M$, two matrices, one symmetric and one antisymmetric, such that their sum is precisely $ M$.

2019 District Olympiad, 3

Let $n$ be an odd natural number and $A,B \in \mathcal{M}_n(\mathbb{C})$ be two matrices such that $(A-B)^2=O_n.$ Prove that $\det(AB-BA)=0.$