This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2012 China Team Selection Test, 3

Given an integer $n\ge 2$, a function $f:\mathbb{Z}\rightarrow \{1,2,\ldots,n\}$ is called [i]good[/i], if for any integer $k,1\le k\le n-1$ there exists an integer $j(k)$ such that for every integer $m$ we have \[f(m+j(k))\equiv f(m+k)-f(m) \pmod{n+1}. \] Find the number of [i]good[/i] functions.

2014 PUMaC Individual Finals A, 3

There are $n$ coins lying in a circle. Each coin has two sides, $+$ and $-$. A $flop$ means to flip every coin that has two different neighbors simultaneously, while leaving the others alone. For instance, $++-+$, after one $flop$, becomes $+---$. For $n$ coins, let us define $M$ to be a $perfect$ $number$ if for any initial arrangement of the coins, the arrangement of the coins after $m$ $flops$ is exactly the same as the initial one. (a) When $n=1024$, find a perfect number $M$. (b) Find all $n$ for which a perfect number $M$ exist.

PEN D Problems, 6

Show that, for any fixed integer $\,n \geq 1,\,$ the sequence \[2, \; 2^{2}, \; 2^{2^{2}}, \; 2^{2^{2^{2}}}, \cdots \pmod{n}\] is eventually constant.

PEN D Problems, 17

Determine all positive integers $n$ such that $ xy+1 \equiv 0 \; \pmod{n} $ implies that $ x+y \equiv 0 \; \pmod{n}$.

2012 Cono Sur Olympiad, 1

1. Around a circumference are written $2012$ number, each of with is equal to $1$ or $-1$. If there are not $10$ consecutive numbers that sum $0$, find all possible values of the sum of the $2012$ numbers.

2013 NIMO Problems, 2

Let $f$ be a function from positive integers to positive integers where $f(n) = \frac{n}{2}$ if $n$ is even and $f(n) = 3n+1$ if $n$ is odd. If $a$ is the smallest positive integer satisfying \[ \underbrace{f(f(\cdots f}_{2013\ f\text{'s}} (a)\cdots)) = 2013, \] find the remainder when $a$ is divided by $1000$. [i]Based on a proposal by Ivan Koswara[/i]

2011 Ukraine Team Selection Test, 7

Find all pairs $(m,n)$ of nonnegative integers for which \[m^2 + 2 \cdot 3^n = m\left(2^{n+1} - 1\right).\] [i]Proposed by Angelo Di Pasquale, Australia[/i]

2006 China Team Selection Test, 1

Let $k$ be an odd number that is greater than or equal to $3$. Prove that there exists a $k^{th}$-degree integer-valued polynomial with non-integer-coefficients that has the following properties: (1) $f(0)=0$ and $f(1)=1$; and. (2) There exist infinitely many positive integers $n$ so that if the following equation: \[ n= f(x_1)+\cdots+f(x_s), \] has integer solutions $x_1, x_2, \dots, x_s$, then $s \geq 2^k-1$.

1983 IMO, 3

Let $a,b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x,y,z$ are non-negative integers.

2012 Serbia National Math Olympiad, 1

Find all natural numbers $n$ for which there is a permutation $(p_1,p_2,...,p_n)$ of numbers $(1,2,...,n)$ such that sets $\{p_1 +1, p_2 + 2,..., p_n +n\}$ and $\{p_1-1, p_2-2,...,p_n -n\}$ are complete residue systems $\mod n$.

2009 Italy TST, 3

Two persons, A and B, set up an incantation contest in which they spell incantations (i.e. a finite sequence of letters) alternately. They must obey the following rules: i) Any incantation can appear no more than once; ii) Except for the first incantation, any incantation must be obtained by permuting the letters of the last one before it, or deleting one letter from the last incantation before it; iii)The first person who cannot spell an incantation loses the contest. Answer the following questions: a) If A says '$STAGEPREIMO$' first, then who will win? b) Let $M$ be the set of all possible incantations whose lengths (i.e. the numbers of letters in them) are $2009$ and containing only four letters $A,B,C,D$, each of them appearing at least once. Find the first incantation (arranged in dictionary order) in $M$ such that A has a winning strategy by starting with it.

PEN D Problems, 12

Suppose that $m>2$, and let $P$ be the product of the positive integers less than $m$ that are relatively prime to $m$. Show that $P \equiv -1 \pmod{m}$ if $m=4$, $p^n$, or $2p^{n}$, where $p$ is an odd prime, and $P \equiv 1 \pmod{m}$ otherwise.

2013 Ukraine Team Selection Test, 10

Let $\mathbb{Z}$ and $\mathbb{Q}$ be the sets of integers and rationals respectively. a) Does there exist a partition of $\mathbb{Z}$ into three non-empty subsets $A,B,C$ such that the sets $A+B, B+C, C+A$ are disjoint? b) Does there exist a partition of $\mathbb{Q}$ into three non-empty subsets $A,B,C$ such that the sets $A+B, B+C, C+A$ are disjoint? Here $X+Y$ denotes the set $\{ x+y : x \in X, y \in Y \}$, for $X,Y \subseteq \mathbb{Z}$ and for $X,Y \subseteq \mathbb{Q}$.

1975 USAMO, 1

(a) Prove that \[ [5x]\plus{}[5y] \ge [3x\plus{}y] \plus{} [3y\plus{}x],\] where $ x,y \ge 0$ and $ [u]$ denotes the greatest integer $ \le u$ (e.g., $ [\sqrt{2}]\equal{}1$). (b) Using (a) or otherwise, prove that \[ \frac{(5m)!(5n)!}{m!n!(3m\plus{}n)!(3n\plus{}m)!}\] is integral for all positive integral $ m$ and $ n$.

2002 Romania Team Selection Test, 4

Let $f:\mathbb{Z}\rightarrow\{ 1,2,\ldots ,n\}$ be a function such that $f(x)\not= f(y)$, for all $x,y\in\mathbb{Z}$ such that $|x-y|\in\{2,3,5\}$. Prove that $n\ge 4$. [i]Ioan Tomescu[/i]

1989 IMO Longlists, 35

Define sequence $ (a_n)$ by $ \sum_{d|n} a_d \equal{} 2^n.$ Show that $ n|a_n.$

2001 Polish MO Finals, 1

Assume that $a,b$ are integers and $n$ is a natural number. $2^na+b$ is a perfect square for every $n$.Prove that $a=0$.

2011 Canadian Open Math Challenge, 11

Let $n$  be a positive integer. A row of $n+ 1$ squares is written from left to right, numbered $0, 1, 2, \cdots, n$ Two frogs, named Alphonse and Beryl, begin a race starting at square 0. For each second that passes, Alphonse and Beryl make a jump to the right according to the following rules: if there are at least eight squares to the right of Alphonse, then Alphonse jumps eight squares to the right. Otherwise, Alphonse jumps one square to the right. If there are at least seven squares to the right of Beryl, then Beryl jumps seven squares to the right. Otherwise, Beryl jumps one square to the right. Let A(n) and B(n) respectively denote the number of seconds for Alphonse and Beryl to reach square n. For example, A(40) = 5 and B(40) = 10. (a) Determine an integer n>200 for which $B(n) <A(n)$. (b) Determine the largest integer n for which$ B(n) \le A(n)$.

2012 ELMO Shortlist, 7

A diabolical combination lock has $n$ dials (each with $c$ possible states), where $n,c>1$. The dials are initially set to states $d_1, d_2, \ldots, d_n$, where $0\le d_i\le c-1$ for each $1\le i\le n$. Unfortunately, the actual states of the dials (the $d_i$'s) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount $c_i$ ($0\le c_i\le c-1$), so that every dial is now in a state $d_i '\equiv d_i+c_i \pmod{c}$ with $0\le d_i ' \le c-1$. After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer $k$ and cyclically shifts the $d_i$'s by $k$ (so that for every $i$, $d_i$ is replaced by $d_{i-k}$, where indices are taken modulo $n$). Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of $k$ (which may vary from turn to turn), if and only if $n$ and $c$ are powers of the same prime. [i]Bobby Shen.[/i]

2013 China Team Selection Test, 3

Find all positive real numbers $r<1$ such that there exists a set $\mathcal{S}$ with the given properties: i) For any real number $t$, exactly one of $t, t+r$ and $t+1$ belongs to $\mathcal{S}$; ii) For any real number $t$, exactly one of $t, t-r$ and $t-1$ belongs to $\mathcal{S}$.

2013 Indonesia MO, 4

Suppose $p > 3$ is a prime number and \[S = \sum_{2 \le i < j < k \le p-1} ijk\] Prove that $S+1$ is divisible by $p$.

1969 IMO Shortlist, 54

$(POL 3)$ Given a polynomial $f(x)$ with integer coefficients whose value is divisible by $3$ for three integers $k, k + 1,$ and $k + 2$. Prove that $f(m)$ is divisible by $3$ for all integers $m.$

PEN J Problems, 11

Prove that ${d((n^2 +1)}^2)$ does not become monotonic from any given point onwards.

1991 Federal Competition For Advanced Students, P2, 3

$ (a)$ Prove that $ 91$ divides $ n^{37}\minus{}n$ for all integers $ n$. $ (b)$ Find the largest $ k$ that divides $ n^{37}\minus{}n$ for all integers $ n$.

1997 Brazil Team Selection Test, Problem 3

Find all positive integers $x>1, y$ and primes $p,q$ such that $p^{x}=2^{y}+q^{x}$