This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2010 Contests, 4

Let $P(x)=ax^3+bx^2+cx+d$ be a polynomial with real coefficients such that \[\min\{d,b+d\}> \max\{|{c}|,|{a+c}|\}\] Prove that $P(x)$ do not have a real root in $[-1,1]$.

1972 Putnam, B6

Let $ n_1<n_2<n_3<\cdots <n_k$ be a set of positive integers. Prove that the polynomial $ 1\plus{}z^{n_1}\plus{}z^{n_2}\plus{}\cdots \plus{}z^{n_k}$ has no roots inside the circle $ |z|<\frac{\sqrt{5}\minus{}1}{2}$.

2021 Iran Team Selection Test, 4

Assume $\Omega(n),\omega(n)$ be the biggest and smallest prime factors of $n$ respectively . Alireza and Amin decided to play a game. First Alireza chooses $1400$ polynomials with integer coefficients. Now Amin chooses $700$ of them, the set of polynomials of Alireza and Amin are $B,A$ respectively . Amin wins if for all $n$ we have : $$\max_{P \in A}(\Omega(P(n))) \ge \min_{P \in B}(\omega(P(n)))$$ Who has the winning strategy. Proposed by [i]Alireza Haghi[/i]

1951 Polish MO Finals, 4

Determine the coefficients of the equation $$ x^3 - ax^2 + bx - c = 0$$ in such a way that the roots of this equation are the numbers $ a $, $ b $, $ c $.

2017 Saudi Arabia IMO TST, 1

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \ge 2017$, the integer $P(n)$ is positive and $S(P(n)) = P(S(n))$.

2004 IMC, 2

Let $f_1(x)=x^2-1$, and for each positive integer $n \geq 2$ define $f_n(x) = f_{n-1}(f_1(x))$. How many distinct real roots does the polynomial $f_{2004}$ have?

1983 Federal Competition For Advanced Students, P2, 2

Let $ x_1,x_2,x_3$ be the roots of: $ x^3\minus{}6x^2\plus{}ax\plus{}a\equal{}0$. Find all real numbers $ a$ for which $ (x_1\minus{}1)^3\plus{}(x_2\minus{}1)^3\plus{}(x_3\minus{}1)^3\equal{}0$. Also, for each such $ a$, determine the corresponding values of $ x_1,x_2,$ and $ x_3$.

1989 IMO Longlists, 97

An arithmetic function is a real-valued function whose domain is the set of positive integers. Define the convolution product of two arithmetic functions $ f$ and $ g$ to be the arithmetic function $ f * g$, where \[ (f * g)(n) \equal{} \sum_{ij\equal{}n} f(i) \cdot g(j),\] and $ f^{*k} \equal{} f * f * \ldots * f$ ($ k$ times) We say that two arithmetic functions $ f$ and $ g$ are dependent if there exists a nontrivial polynomial of two variables $ P(x, y) \equal{} \sum_{i,j} a_{ij} x^i y^j$ with real coefficients such that \[ P(f,g) \equal{} \sum_{i,j} a_{ij} f^{*i} * g^{*j} \equal{} 0,\] and say that they are independent if they are not dependent. Let $ p$ and $ q$ be two distinct primes and set \[ f_1(n) \equal{} \begin{cases} 1 & \text{ if } n \equal{} p, \\ 0 & \text{ otherwise}. \end{cases}\] \[ f_2(n) \equal{} \begin{cases} 1 & \text{ if } n \equal{} q, \\ 0 & \text{ otherwise}. \end{cases}\] Prove that $ f_1$ and $ f_2$ are independent.

1975 Vietnam National Olympiad, 1

The roots of the equation $x^3 - x + 1 = 0$ are $a, b, c$. Find $a^8 + b^8 + c^8$.

2023 IMC, 4

Let $p$ be a prime number and let $k$ be a positive integer. Suppose that the numbers $a_i=i^k+i$ for $i=0,1, \ldots,p-1$ form a complete residue system modulo $p$. What is the set of possible remainders of $a_2$ upon division by $p$?

1991 Bulgaria National Olympiad, Problem 4

Let $f(x)$ be a polynomial of degree $n$ with real coefficients, having $n$ (not necessarily distinct) real roots. Prove that for all real $x$, $$f(x)f''(x)\le f'(x)^2.$$

2013 CHMMC (Fall), 2

Suppose the roots of $$x^4 - 3x^2 + 6x - 12 = 1$$ are $\alpha$, $\beta$, $\gamma$ , and $\delta$. What is the value of $$\frac{\alpha+ \beta+ \gamma }{\delta^2}+\frac{\alpha+ \delta+ \gamma}{\beta^2}+\frac{\alpha+ \beta+ \delta}{\gamma^2}+\frac{\delta+ \beta+ \gamma }{\alpha^2}?$$

2016 ISI Entrance Examination, 3

Tags: polynomial
If $P(x)=x^n+a_1x^{n-1}+...+a_{n-1}$ be a polynomial with real coefficients and $a_1^2<a_2$ then prove that not all roots of $P(x)$ are real.

2000 Slovenia National Olympiad, Problem 2

Consider the polynomial $p(x)=a_nx^n+\ldots+a_1x+a_0$ with real coefficients such that $0\le a_i\le a_0$ for each $i=1,2,\ldots,n$. If $a$ is the coefficient of $x^{n+1}$ in the polynomial $q(x)=p(x)^2$, prove that $2a\le p(1)^2$.

2022 Flanders Math Olympiad, 4

Determine all real polynomials $P$ of degree at most $22$ for which $$kP (k + 1) - (k + 1)P (k) = k^2 + k + 1$$ for all $k \in \{1, 2, 3, . . . , 21, 22\}$.

1941 Moscow Mathematical Olympiad, 077

A polynomial $P(x)$ with integer coefficients takes odd values at $x = 0$ and $x = 1$. Prove that $P(x)$ has no integer roots.

2007 Tournament Of Towns, 2

The polynomial $x^3 + px^2 + qx + r$ has three roots in the interval $(0,2)$. Prove that $-2 <p + q + r < 0$.

PEN E Problems, 6

Find a factor of $2^{33}-2^{19}-2^{17}-1$ that lies between $1000$ and $5000$.

1994 Brazil National Olympiad, 4

Let $a, b > 0$ be reals such that \[ a^3=a+1\\ b^6=b+3a \] Show that $a>b$

2023 Macedonian Team Selection Test, Problem 5

Let $Q(x) = a_{2023}x^{2023}+a_{2022}x^{2022}+\dots+a_{1}x+a_{0} \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. For an odd prime number $p$ we define the polynomial $Q_{p}(x) = a_{2023}^{p-2}x^{2023}+a_{2022}^{p-2}x^{2022}+\dots+a_{1}^{p-2}x+a_{0}^{p-2}.$ Assume that there exist infinitely primes $p$ such that $$\frac{Q_{p}(x)-Q(x)}{p}$$ is an integer for all $x \in \mathbb{Z}$. Determine the largest possible value of $Q(2023)$ over all such polynomials $Q$. [i]Authored by Nikola Velov[/i]

2007 Tournament Of Towns, 3

Let $f(x)$ be a polynomial of nonzero degree. Can it happen that for any real number $a$, an even number of real numbers satisfy the equation $f(x) = a$?

2019 IFYM, Sozopol, 8

Find all polynomials $f\in Z[X],$ such that for each odd prime $p$ $$f(p)|(p-3)!+\frac{p+1}{2}.$$

2001 German National Olympiad, 1

Determine all real numbers $q$ for which the equation $x^4 -40x^2 +q = 0$ has four real solutions which form an arithmetic progression

1977 Bulgaria National Olympiad, Problem 5

Let $Q(x)$ be a non-zero polynomial and $k$ be a natural number. Prove that the polynomial $P(x) = (x-1)^kQ(x)$ has at least $k+1$ non-zero coefficients.

2007 Moldova Team Selection Test, 2

Find all polynomials $f\in \mathbb{Z}[X]$ such that if $p$ is prime then $f(p)$ is also prime.