This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 307

1990 Bundeswettbewerb Mathematik, 2

The sequence $a_0,a_1,a_2,...$ is defined by $a_0 = 0, a_1 = a_2 = 1$ and $a_{n+2} +a_{n-1} = 2(a_{n+1} +a_n)$ for all $n \in N$. Show that all $a_n$ are perfect squares .

Oliforum Contest I 2008, 1

Consider the sequence of integer such that: $ a_1 = 2$ $ a_2 = 5$ $ a_{n + 1} = (2 - n^2)a_n + (2 + n^2)a_{n - 1}, \forall n\ge 2$ Find all triplies $ (x,y,z) \in \mathbb{N}^3$ such that $ a_xa_y = a_z$.

1998 Slovenia Team Selection Test, 6

Let $a_0 = 1998$ and $a_{n+1} =\frac{a_n^2}{a_n +1}$ for each nonnegative integer $n$. Prove that $[a_n] = 1994- n$ for $0 \le n \le 1000$

1962 Dutch Mathematical Olympiad, 3

Consider the positive integers written in the decimal system with $n$ digits, the start of which is not zero and where there are no two sevens next to each other. The number of these numbers is called $u_n$. Derive a relation that expresses $u_{n+2}$ in terms of $u_{n+1}$ and $u_n$.

1995 IMO Shortlist, 5

For positive integers $ n,$ the numbers $ f(n)$ are defined inductively as follows: $ f(1) \equal{} 1,$ and for every positive integer $ n,$ $ f(n\plus{}1)$ is the greatest integer $ m$ such that there is an arithmetic progression of positive integers $ a_1 < a_2 < \ldots < a_m \equal{} n$ for which \[ f(a_1) \equal{} f(a_2) \equal{} \ldots \equal{} f(a_m).\] Prove that there are positive integers $ a$ and $ b$ such that $ f(an\plus{}b) \equal{} n\plus{}2$ for every positive integer $ n.$

1972 IMO Longlists, 15

Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.

2008 Mathcenter Contest, 5

Let $P_1(x)=\frac{1}{x}$ and $P_n(x)=P_{n-1}(x)+P_{n-1}(x-1)$ for every natural $ n$ greater than $1$. Find the value of $P_{2008}(2008)$. [i](Mathophile)[/i]