This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 84

2018 Romania National Olympiad, 1

Let $A$ be a finite ring and $a,b \in A,$ such that $(ab-1)b=0.$ Prove that $b(ab-1)=0.$

1999 Brazil Team Selection Test, Problem 4

Let Q+ and Z denote the set of positive rationals and the set of inte- gers, respectively. Find all functions f : Q+ → Z satisfying the following conditions: (i) f(1999) = 1; (ii) f(ab) = f(a) + f(b) for all a, b ∈ Q+; (iii) f(a + b) ≥ min{f(a), f(b)} for all a, b ∈ Q+.

PEN H Problems, 31

Determine all integer solutions of the system \[2uv-xy=16,\] \[xv-yu=12.\]

2002 District Olympiad, 2

[b]a)[/b] Show that, for any distinct natural numbers $ m,n, $ the rings $ \mathbb{Z}_2\times \underbrace{\cdots}_{m\text{ times}} \times\mathbb{Z}_2,\mathbb{Z}_2\times \underbrace{\cdots}_{n\text{ times}} \times\mathbb{Z}_2 $ are homomorphic, but not isomorphic. [b]b)[/b] Show that there are infinitely many pairwise nonhomomorphic rings of same order.

2000 IMC, 5

Let $R$ be a ring of characteristic zero. Let $e,f,g\in R$ be idempotent elements (an element $x$ is called idempotent if $x^2=x$) satisfying $e+f+g=0$. Show that $e=f=g=0$.

1996 Romania National Olympiad, 3

Let $A$ be a commutative ring with $0 \neq 1$ such that for any $x \in A \setminus \{0\}$ there exist positive integers $m,n$ such that $(x^m+1)^n=x.$ Prove that any endomorphism of $A$ is an automorphism.

1966 Miklós Schweitzer, 8

Prove that in Euclidean ring $ R$ the quotient and remainder are always uniquely determined if and only if $ R$ is a polynomial ring over some field and the value of the norm is a strictly monotone function of the degree of the polynomial. (To be precise, there are two trivial cases: $ R$ can also be a field or the null ring.) [i]E. Fried[/i]

1967 AMC 12/AHSME, 38

Tags: ring theory
Given a set $S$ consisting of two undefined elements "pib" and "maa", and the four postulates: $P_1$: Every pib is a collection of maas, $P_2$: Any two distinct pibs have one and only one maa in common, $P_3$: Every maa belongs to two and only two pibs, $P_4$: There are exactly four pibs. Consider the three theorems: $T_1$: There are exactly six maas, $T_2$: There are exactly three maas in each pib, $T_3$: For each maa there is exactly one other maa not in the same pid with it. The theorems which are deducible from the postulates are: $\textbf{(A)}\ T_3 \; \text{only}\qquad \textbf{(B)}\ T_2 \; \text{and} \; T_3 \; \text{only} \qquad \textbf{(C)}\ T_1 \; \text{and} \; T_2 \; \text{only}\\ \textbf{(D)}\ T_1 \; \text{and} \; T_3 \; \text{only}\qquad \textbf{(E)}\ \text{all}$

2016 Romania National Olympiad, 2

Let $A$ be a ring and let $D$ be the set of its non-invertible elements. If $a^2=0$ for any $a \in D,$ prove that: [b]a)[/b] $axa=0$ for all $a \in D$ and $x \in A$; [b]b)[/b] if $D$ is a finite set with at least two elements, then there is $a \in D,$ $a \neq 0,$ such that $ab=ba=0,$ for every $b \in D.$ [i]Ioan Băetu[/i]