This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 295

2016 India PRMO, 14

Tags: set , minimum , subset
Find the minimum value of $m$ such that any $m$-element subset of the set of integers $\{1,2,...,2016\}$ contains at least two distinct numbers $a$ and $b$ which satisfy $|a - b|\le 3$.

2017 Bosnia And Herzegovina - Regional Olympiad, 4

Let $S$ be a set of $n$ distinct real numbers, and $A_S$ set of arithemtic means of two distinct numbers from $S$. For given $n \geq 2$ find minimal number of elements in $A_S$

1987 China Team Selection Test, 1

a.) For all positive integer $k$ find the smallest positive integer $f(k)$ such that $5$ sets $s_1,s_2, \ldots , s_5$ exist satisfying: [b]i.[/b] each has $k$ elements; [b]ii.[/b] $s_i$ and $s_{i+1}$ are disjoint for $i=1,2,...,5$ ($s_6=s_1$) [b]iii.[/b] the union of the $5$ sets has exactly $f(k)$ elements. b.) Generalisation: Consider $n \geq 3$ sets instead of $5$.

2010 German National Olympiad, 3

An infinite fairytale is a book with pages numbered $1,2,3,\ldots$ where all natural numbers appear. An author wants to write an infinite fairytale such that a new dwarf is introduced on each page. Afterward, the page contains several discussions between groups of at least two of the already introduced dwarfs. The publisher wants to make the book more exciting and thus requests the following condition: Every infinite set of dwarfs contains a group of at least two dwarfs, who formed a discussion group at some point as well as a group of the same size for which this is not true. Can the author fulfill this condition?

2021 South East Mathematical Olympiad, 5

Tags: combinatorics , set
Let $A=\{a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n\}$ be a set with $2n$ distinct elements, and $B_i\subseteq A$ for any $i=1,2,\cdots,m.$ If $\bigcup_{i=1}^m B_i=A,$ we say that the ordered $m-$tuple $(B_1,B_2,\cdots,B_m)$ is an ordered $m-$covering of $A.$ If $(B_1,B_2,\cdots,B_m)$ is an ordered $m-$covering of $A,$ and for any $i=1,2,\cdots,m$ and any $j=1,2,\cdots,n,$ $\{a_j,b_j\}$ is not a subset of $B_i,$ then we say that ordered $m-$tuple $(B_1,B_2,\cdots,B_m)$ is an ordered $m-$covering of $A$ without pairs. Define $a(m,n)$ as the number of the ordered $m-$coverings of $A,$ and $b(m,n)$ as the number of the ordered $m-$coverings of $A$ without pairs. $(1)$ Calculate $a(m,n)$ and $b(m,n).$ $(2)$ Let $m\geq2,$ and there is at least one positive integer $n,$ such that $\dfrac{a(m,n)}{b(m,n)}\leq2021,$ Determine the greatest possible values of $m.$

2015 Korea National Olympiad, 3

Tags: set , combinatorics
A positive integer $n$ is given. If there exists sets $F_1, F_2, \cdots F_m$ satisfying the following conditions, prove that $m \le n$. (For sets $A, B$, $|A|$ is the number of elements of $A$. $A-B$ is the set of elements that are in $A$ but not $B$. $\text{min}(x,y)$ is the number that is not larger than the other.) (i): For all $1 \le i \le m$, $F_i \subseteq \{1,2,\cdots,n\}$ (ii): For all $1 \le i < j \le m$, $\text{min}(|F_i-F_j|,|F_j-F_i|) = 1$

2015 Thailand TSTST, 1

Tags: set , combinatorics
Let $A$ be a subset of $\{1, 2, \dots , 1000000\}$ such that for any $x, y \in A$ with $x\neq y$, we have $xy\notin A$. Determine the maximum possible size of $A$.

2012 Danube Mathematical Competition, 4

Tags: combinatorics , sum , subset , set
Let $A$ be a subset with seven elements of the set $\{1,2,3, ...,26\}$. Show that there are two distinct elements of $A$, having the same sum of their elements.

2018 IMO Shortlist, A3

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2017 AIME Problems, 12

Call a set $S$ [i]product-free[/i] if there do not exist $a, b, c \in S$ (not necessarily distinct) such that $a b = c$. For example, the empty set and the set $\{16, 20\}$ are product-free, whereas the sets $\{4, 16\}$ and $\{2, 8, 16\}$ are not product-free. Find the number of product-free subsets of the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

2009 Ukraine Team Selection Test, 6

Find all odd prime numbers $p$ for which there exists a natural number $g$ for which the sets \[A=\left\{ \left( {{k}^{2}}+1 \right)\,\bmod p|\,k=1,2,\ldots ,\frac{p-1}{2} \right\}\] and \[B=\left\{ {{g}^{k}}\bmod \,p|\,k=1,2,...,\frac{p-1}{2} \right\}\] are equal.

1996 Korea National Olympiad, 6

Find the minimum value of $k$ such that there exists two sequence ${a_i},{b_i}$ for $i=1,2,\cdots ,k$ that satisfies the following conditions. (i) For all $i=1,2,\cdots ,k,$ $a_i,b_i$ is the element of $S=\{1996^n|n=0,1,2,\cdots\}.$ (ii) For all $i=1,2,\cdots, k, a_i\ne b_i.$ (iii) For all $i=1,2,\cdots, k, a_i\le a_{i+1}$ and $b_i\le b_{i+1}.$ (iv) $\sum_{i=1}^{k} a_i=\sum_{i=1}^{k} b_i.$

2020 Taiwan APMO Preliminary, P5

Tags: set theory , set
Let $S$ is the set of permutation of {1,2,3,4,5,6,7,8} (1)For all $\sigma=\sigma_1\sigma_2...\sigma_8\in S$ Evaluate the sum of S=$\sigma_1\sigma_2+\sigma_3\sigma_4+\sigma_5\sigma_6+\sigma_7\sigma_8$. Then for all elements in $S$,what is the arithmetic mean of S? (Notice $S$ and S are different.) (2)In $S$, how many permutations are there which satisfies "For all $k=1,2,...,7$,the digit after k is [b]not[/b] (k+1)"?

2015 Greece JBMO TST, 4

Pupils of a school are divided into $112$ groups, of $11$ members each. Any two groups have exactly one common pupil. Prove that: a) there is a pupil that belongs to at least $12$ groups. b) there is a pupil that belongs to all the groups.

1996 Italy TST, 4

4.4. Prove that there exists a set X of 1996 positive integers with the following properties: (i) the elements of X are pairwise coprime; (ii) all elements of X and all sums of two or more distinct elements of X are composite numbers

2016 Bosnia And Herzegovina - Regional Olympiad, 4

Let $A$ be a set of $65$ integers with pairwise different remainders modulo $2016$. Prove that exists a subset $B=\{a,b,c,d\}$ of set $A$ such that $a+b-c-d$ is divisible with $2016$

2025 Bangladesh Mathematical Olympiad, P7

Yamin and Tamim are playing a game with subsets of $\{1, 2, \ldots, n\}$ where $n \geq 3$. [list] [*] Tamim starts the game with the empty set. [*] On Yamin's turn, he adds a proper non-empty subset of $\{1, 2, \ldots, n\}$ to his collection $F$ of blocked sets. [*] On Tamim's turn, he adds or removes a positive integer less than or equal to $n$ to or from their set but Tamim can never add or remove an element so that his set becomes one of the blocked sets in $F$. [/list] Tamim wins if he can make his set to be $\{1, 2, \ldots, n\}$. Yamin wins if he can stop Tamim from doing so. Yamin goes first and they alternate making their moves. Does Tamim have a winning strategy? [i]Proposed by Ahmed Ittihad Hasib[/i]

1987 China Team Selection Test, 1

a.) For all positive integer $k$ find the smallest positive integer $f(k)$ such that $5$ sets $s_1,s_2, \ldots , s_5$ exist satisfying: [b]i.[/b] each has $k$ elements; [b]ii.[/b] $s_i$ and $s_{i+1}$ are disjoint for $i=1,2,...,5$ ($s_6=s_1$) [b]iii.[/b] the union of the $5$ sets has exactly $f(k)$ elements. b.) Generalisation: Consider $n \geq 3$ sets instead of $5$.

2001 Abels Math Contest (Norwegian MO), 2

Let $A$ be a set, and let $P (A)$ be the powerset of all non-empty subsets of $A$. (For example, $A = \{1,2,3\}$, then $P (A) = \{\{1\},\{2\} ,\{3\},\{1,2\}, \{1,3\},\{2,3\}, \{1,2,3\}\}$.) A subset $F$ of P $(A)$ is called [i]strong [/i] if the following is true: If $B_1$ and $B_2$ are elements of $F$, then $B_1 \cup B_2$ is also an element of $F$. Suppose that $F$ and $G$ are strong subsets of $P (A)$. a) Is the union $F \cup G$ necessarily strong? b) Is the intersection $F \cap G$ necessarily strong?

1990 Bulgaria National Olympiad, Problem 4

Tags: number theory , set
Suppose $M$ is an infinite set of natural numbers such that, whenever the sum of two natural numbers is in $M$, one of these two numbers is in $M$ as well. Prove that the elements of any finite set of natural numbers not belonging to $M$ have a common divisor greater than $1$.