This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 295

2013 Balkan MO Shortlist, N7

Two distinct positive integers are called [i]close [/i] if their greatest common divisor equals their difference. Show that for any $n$, there exists a set $S$ of $n$ elements such that any two elements of $S$ are close.

2021 Junior Balkаn Mathematical Olympiad, 2

For any set $A = \{x_1, x_2, x_3, x_4, x_5\}$ of five distinct positive integers denote by $S_A$ the sum of its elements, and denote by $T_A$ the number of triples $(i, j, k)$ with $1 \le i < j < k \le 5$ for which $x_i + x_j + x_k$ divides $S_A$. Find the largest possible value of $T_A$.

2019 Taiwan APMO Preliminary Test, P5

Find the minimum positive integer $n$ such that for any set $A$ with $n$ positive intergers has $15$ elements which sum is divisible by $15$.

2022 Iran MO (3rd Round), 3

Tags: union , set , combinatorics
We have many $\text{three-element}$ subsets of a $1000\text{-element}$ set. We know that the union of every $5$ of them has at least $12$ elements. Find the most possible value for the number of these subsets.

2010 BAMO, 1

We write $\{a,b,c\}$ for the set of three different positive integers $a, b$, and $c$. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of $\{a,b,c\}$. We can then calculate the sum of the elements of each subset. For example, for the set $\{4,7,42\}$ we will find sums of $4, 7, 42,11, 46, 49$, and $53$ for its seven subsets. Since $7, 11$, and $53$ are prime, the set $\{4,7,42\}$ has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, $1$ and themselves. In particular, the number $1$ is not prime.) What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set $\{a,b,c\}$ that has that number of subsets with prime sums, and explain why no other three-element set could have more.

2015 Junior Regional Olympiad - FBH, 5

Tags: disjoint , set
Prove that for every parititon of set $X=\{1,2,...,9\}$ on two disjoint sets at least one of them contains three elements such that sum of some two of them is equal to third

2013 Israel National Olympiad, 2

Let $A=\{n\in\mathbb{Z}\mid 0<n<2013\}$. A subset $B\subseteq A$ is called [b]reduced[/b] if for any two numbers $x,y\in B$, we must have $x\cdot y \notin B$. For example, any subset containing the numbers $3,5,15$ cannot be reduced, and same for a subset containing $4,16$. [list=a] [*] Find the maximal size of a reduced subset of $A$. [*] How many reduced subsets are there with that maximal size? [/list]

2019 India IMO Training Camp, P1

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2018 Malaysia National Olympiad, B2

Tags: set , proof , number theory
A subset of $\{1, 2, 3, ... ... , 2015\}$ is called good if the following condition is fulfilled: for any element $x$ of the subset, the sum of all the other elements in the subset has the same last digit as $x$. For example, $\{10, 20, 30\}$ is a good subset since $10$ has the same last digit as $20 + 30 = 50$, $20$ has the same last digit as $10 + 30 = 40$, and $30$ has the same last digit as $10 + 20 = 30$. (a) Find an example of a good subset with 400 elements. (b) Prove that there is no good subset with 405 elements.

2020 Thailand TSTST, 6

Tags: set , combinatorics
A nonempty set $S$ is called [i]Bally[/i] if for every $m\in S$, there are fewer than $\frac{1}{2}m$ elements of $S$ which are less than $m$. Determine the number of Bally subsets of $\{1, 2, . . . , 2020\}$.

2007 QEDMO 4th, 11

Let $S_{1},$ $S_{2},$ $...,$ $S_{n}$ be finitely many subsets of $\mathbb{N}$ such that $S_{1}\cup S_{2}\cup...\cup S_{n}=\mathbb{N}.$ Prove that there exists some $k\in\left\{ 1,2,...,n\right\} $ such that for each positive integer $m,$ the set $S_{k}$ contains infinitely many multiples of $m.$

2018 Thailand TST, 2

For finite sets $A,M$ such that $A \subseteq M \subset \mathbb{Z}^+$, we define $$f_M(A)=\{x\in M \mid x\text{ is divisible by an odd number of elements of }A\}.$$ Given a positive integer $k$, we call $M$ [i]k-colorable[/i] if it is possible to color the subsets of $M$ with $k$ colors so that for any $A \subseteq M$, if $f_M(A)\neq A$ then $f_M(A)$ and $A$ have different colors. Determine the least positive integer $k$ such that every finite set $M \subset\mathbb{Z}^+$ is k-colorable.

2016 India IMO Training Camp, 3

Let $\mathbb N$ denote the set of all natural numbers. Show that there exists two nonempty subsets $A$ and $B$ of $\mathbb N$ such that [list=1] [*] $A\cap B=\{1\};$ [*] every number in $\mathbb N$ can be expressed as the product of a number in $A$ and a number in $B$; [*] each prime number is a divisor of some number in $A$ and also some number in $B$; [*] one of the sets $A$ and $B$ has the following property: if the numbers in this set are written as $x_1<x_2<x_3<\cdots$, then for any given positive integer $M$ there exists $k\in \mathbb N$ such that $x_{k+1}-x_k\ge M$. [*] Each set has infinitely many composite numbers. [/list]

2012 Dutch BxMO/EGMO TST, 5

Let $A$ be a set of positive integers having the following property: for each positive integer $n$ exactly one of the three numbers $n, 2n$ and $3n$ is an element of $A$. Furthermore, it is given that $2 \in A$. Prove that $13824 \notin A$.

2016 Switzerland Team Selection Test, Problem 1

Let $n$ be a natural number. Two numbers are called "unsociable" if their greatest common divisor is $1$. The numbers $\{1,2,...,2n\}$ are partitioned into $n$ pairs. What is the minimum number of "unsociable" pairs that are formed?

2021 Iberoamerican, 1

Let $P = \{p_1,p_2,\ldots, p_{10}\}$ be a set of $10$ different prime numbers and let $A$ be the set of all the integers greater than $1$ so that their prime decomposition only contains primes of $P$. The elements of $A$ are colored in such a way that: [list] [*] each element of $P$ has a different color, [*] if $m,n \in A$, then $mn$ is the same color of $m$ or $n$, [*] for any pair of different colors $\mathcal{R}$ and $\mathcal{S}$, there are no $j,k,m,n\in A$ (not necessarily distinct from one another), with $j,k$ colored $\mathcal{R}$ and $m,n$ colored $\mathcal{S}$, so that $j$ is a divisor of $m$ and $n$ is a divisor of $k$, simultaneously. [/list] Prove that there exists a prime of $P$ so that all its multiples in $A$ are the same color.

2013 German National Olympiad, 5

Five people form several commissions to prepare a competition. Here any commission must be nonempty and any two commissions cannot contain the same members. Moreover, any two commissions have at least one common member. There are already $14$ commissions. Prove that at least one additional commission can be formed.

2018 Iran MO (1st Round), 16

Tags: set , algebra
A subset of the real numbers has the property that for any two distinct elements of it such as $x$ and $y$, we have $(x+y-1)^2 = xy+1$. What is the maximum number of elements in this set? $\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ \text{Infinity}$

2019 Brazil Team Selection Test, 4

Let $p \geq 7$ be a prime number and $$S = \bigg\{jp+1 : 1 \leq j \leq \frac{p-5}{2}\bigg\}.$$ Prove that at least one element of $S$ can be written as $x^2+y^2$, where $x, y$ are integers.

2011 JBMO Shortlist, 5

Tags: combinatorics , set
A set $S$ of natural numbers is called [i]good[/i], if for each element $x \in S, x$ does not divide the sum of the remaining numbers in $S$. Find the maximal possible number of elements of a [i]good [/i]set which is a subset of the set $A = \{1,2, 3, ...,63\}$.

ICMC 4, 1

Let \(S\) be a set with 10 distinct elements. A set \(T\) of subsets of \(S\) (possibly containing the empty set) is called [i]union-closed[/i] if, for all \(A, B \in T\), it is true that \(A \cup B \in T\). Show that the number of union-closed sets \(T\) is less than \(2^{1023}\). [i]Proposed by Tony Wang[/i]

1997 Bosnia and Herzegovina Team Selection Test, 5

$a)$ Prove that for all positive integers $n$ exists a set $M_n$ of positive integers with exactly $n$ elements and: $i)$ Arithmetic mean of arbitrary non-empty subset of $M_n$ is integer $ii)$ Geometric mean of arbitrary non-empty subset of $M_n$ is integer $iii)$ Both arithmetic mean and geometry mean of arbitrary non-empty subset of $M_n$ is integer $b)$ Does there exist infinite set $M$ of positive integers such that arithmetic mean of arbitrary non-empty subset of $M$ is integer

2016 Dutch IMO TST, 4

Tags: combinatorics , set
Determine the number of sets $A = \{a_1,a_2,...,a_{1000}\}$ of positive integers satisfying $a_1 < a_2 <...< a_{1000} \le 2014$, for which we have that the set $S = \{a_i + a_j | 1 \le i, j \le 1000$ with $i + j \in A\}$ is a subset of $A$.

1962 Putnam, A6

Let $S$ be a set of rational numbers such that whenever $a$ and $b$ are members of $S$, so are $ab$ and $a+b$, and having the property that for every rational number $r$ exactly one of the following three statements is true: $$r\in S,\;\; -r\in S,\;\;r =0.$$ Prove that $S$ is the set of all positive rational numbers.

2007 Nicolae Coculescu, 4

Let be a natural number $ n\ge 2. $ Prove that there exists an unique bipartition $ \left( A,B \right) $ of the set $ \{ 1,2\ldots ,n \} $ such that $ \lfloor \sqrt x \rfloor\neq y , $ for any $ x,y\in A , $ and $ \lfloor \sqrt z \rfloor\neq t , $ for any $ z,t\in B. $ [i]Costin Bădică[/i]