This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 295

2015 District Olympiad, 3

Tags: set , sequence
Consider the following sequence of sets: $ \{ 1,2\} ,\{ 3,4,5\}, \{ 6,7,8,9\} ,... $ [b]a)[/b] Find the samllest element of the $ 100\text{-th} $ term. [b]b)[/b] Is $ 2015 $ the largest element of one of these sets?

2019 India PRMO, 21

Consider the set $E = \{5, 6, 7, 8, 9\}$. For any partition ${A, B}$ of $E$, with both $A$ and $B$ non-empty, consider the number obtained by adding the product of elements of $A$ to the product of elements of $B$. Let $N$ be the largest prime number amonh these numbers. Find the sum of the digits of $N$.

2016 Indonesia TST, 1

Let $k$ and $n$ be positive integers. Determine the smallest integer $N \ge k$ such that the following holds: If a set of $N$ integers contains a complete residue modulo $k$, then it has a non-empty subset whose sum of elements is divisible by $n$.

2022 Bulgarian Autumn Math Competition, Problem 10.4

Tags: set , combinatorics
The European zoos with exactly $100$ types of species each are separated into two groups $\hat{A}$ and $\hat{B}$ in such a way that every pair of zoos $(A, B)$ $(A\in\hat{A}, B\in\hat{B})$ have some animal in common. Prove that we can colour the cages in $3$ colours (all animals of the same type live in the same cage) such that no zoo has cages of only one colour

2016 Hanoi Open Mathematics Competitions, 6

Let $A$ consist of $16$ elements of the set $\{1, 2, 3,..., 106\}$, so that the difference of two arbitrary elements in $A$ are different from $6, 9, 12, 15, 18, 21$. Prove that there are two elements of $A$ for which their difference equals to $3$.

1991 French Mathematical Olympiad, Problem 4

Tags: set , number theory
Let $p$ be a nonnegative integer and let $n=2^p$. Consider all subsets $A$ of the set $\{1,2,\ldots,n\}$ with the property that, whenever $x\in A$, $2x\notin A$. Find the maximum number of elements that such a set $A$ can have.

2020 Israel Olympic Revenge, P2

Tags: set , combinatorics
Let $A, B\subset \mathbb{Z}$ be two sets of integers. We say that $A,B$ are [u]mutually repulsive[/u] if there exist positive integers $m,n$ and two sequences of integers $\alpha_1, \alpha_2, \dots, \alpha_n$ and $\beta_1, \beta_2, \dots, \beta_m$, for which there is a [b]unique[/b] integer $x$ such that the number of its appearances in the sequence of sets $A+\alpha_1, A+\alpha_2, \dots, A+\alpha_n$ is [u]different[/u] than the number of its appearances in the sequence of sets $B+\beta_1, \dots, B+\beta_m$. For a given quadruple of positive integers $(n_1,d_1, n_2, d_2)$, determine whether the sets \[A=\{d_1, 2d_1, \dots, n_1d_1\}\] \[B=\{d_2, 2d_2, \dots, n_2d_2\}\] are mutually repulsive. For a set $X\subset \mathbb{Z}$ and $c\in \mathbb{Z}$, we define $X+c=\{x+c\mid x\in X\}$.

2019 Mathematical Talent Reward Programme, SAQ: P 6

Consider a finite set of points, $\Phi$, in the $\mathbb{R}^2$, such that they follow the following properties : [list] [*] $\Phi$ doesn't contain the origin $\{(0,0)\}$ and not all points are collinear. [*] If $\alpha \in \Phi$, then $-\alpha \in \Phi$, $c\alpha \notin \Phi $ for $c\neq 1$ or $-1$ [*] If $\alpha, \ \beta$ are in $\Phi$, then the reflection of $\beta$ in the line passing through the origin and perpendicular to the line containing origin and $\alpha$ is in $\Phi$ [*] If $\alpha = (a,b) , \ \beta = (c,d)$, (both $\alpha, \ \beta \in \Phi$) then $\frac{2(ac+bd)}{c^2+d^2} \in \mathbb{Z}$ [/list] Prove that there cannot be 5 collinear points in $\Phi$

2015 Korea Junior Math Olympiad, 8

Tags: set , combinatorics
A positive integer $n$ is given. If there exist sets $F_1, F_2, \cdots F_m$ satisfying the following, prove that $m \le n$. (For sets $A, B$, $|A|$ is the number of elements in $A$. $A-B$ is the set of elements that are in $A$ but not $B$) (i): For all $1 \le i \le m$, $F_i \subseteq \{1,2,\cdots n\}$ (ii): $|F_1| \le |F_2| \le \cdots \le |F_m|$ (iii): For all $1 \le i < j \le m$, $|F_i-F_j|=1$.

2010 Contests, 1

We write $\{a,b,c\}$ for the set of three different positive integers $a, b$, and $c$. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of $\{a,b,c\}$. We can then calculate the sum of the elements of each subset. For example, for the set $\{4,7,42\}$ we will find sums of $4, 7, 42,11, 46, 49$, and $53$ for its seven subsets. Since $7, 11$, and $53$ are prime, the set $\{4,7,42\}$ has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, $1$ and themselves. In particular, the number $1$ is not prime.) What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set $\{a,b,c\}$ that has that number of subsets with prime sums, and explain why no other three-element set could have more.

2011 BAMO, 3

Let $S$ be a finite, nonempty set of real numbers such that the distance between any two distinct points in $S$ is an element of $S$. In other words, $|x-y|$ is in $S$ whenever $x \ne y$ and $x$ and $y$ are both in $S$. Prove that the elements of $S$ may be arranged in an arithmetic progression. This means that there are numbers $a$ and $d$ such that $S = \{a, a+d, a+2d, a+3d, ..., a+kd, ...\}$.

1974 Poland - Second Round, 1

Let $ Z $ be a set of $ n $ elements. Find the number of such pairs of sets $ (A, B) $ such that $ A $ is contained in $ B $ and $ B $ is contained in $ Z $. We assume that every set also contains itself and the empty set.

2007 German National Olympiad, 5

Determine all finite sets $M$ of real numbers such that $M$ contains at least $2$ numbers and any two elements of $M$ belong to an arithmetic progression of elements of $M$ with three terms.

2011 VTRMC, Problem 6

Tags: set
Let $S$ be a set with an asymmetric relation $<$; this means that if $a,b\in S$ and $a<b$, then we do not have $b<a$. Prove that there exists a set $T$ containing $S$ with an asymmetric relation $\prec$ with the property that if $a,b\in S$, then $a<b$ if and only if $a\prec b$, and if $x,y\in T$ with $x\prec y$, then there exists $t\in T$ such that $x\prec t\prec y$.

2021 Science ON all problems, 4

Take $k\in \mathbb{Z}_{\ge 1}$ and the sets $A_1,A_2,\dots, A_k$ consisting of $x_1,x_2,\dots ,x_k$ positive integers, respectively. For any two sets $A$ and $B$, define $A+B=\{a+b~|~a\in A,~b\in B\}$. Find the least and greatest number of elements the set $A_1+A_2+\dots +A_k$ may have. [i] (Andrei Bâra)[/i]

1987 All Soviet Union Mathematical Olympiad, 459

The $T_0$ set consists of all the numbers, representable as $(2k)!, k = 0, 1, 2, ... , n, ...$. The $T_m$ set is obtained from $T_{m-1}$ by adding all the finite sums of different numbers, that belong to $T_{m-1}$. Prove that there is a natural number, that doesn't belong to $T_{1987}$.

2010 ISI B.Stat Entrance Exam, 3

Let $I_1, I_2, I_3$ be three open intervals of $\mathbb{R}$ such that none is contained in another. If $I_1\cap I_2 \cap I_3$ is non-empty, then show that at least one of these intervals is contained in the union of the other two.

2014 Saudi Arabia GMO TST, 4

Tags: rational , set , algebra
Let $X$ be a set of rational numbers satisfying the following two conditions: (a) The set $X$ contains at least two elements, (b) For any $x, y$ in $X$, if $x \ne y$ then there exists $z$ in $X$ such that either $\left| \frac{x- z}{y - z} \right|= 2$ or $\left| \frac{y -z}{x - z} \right|= 2$ . Prove that $X$ contains infinitely many elements.

2021 JBMO Shortlist, N3

For any set $A = \{x_1, x_2, x_3, x_4, x_5\}$ of five distinct positive integers denote by $S_A$ the sum of its elements, and denote by $T_A$ the number of triples $(i, j, k)$ with $1 \le i < j < k \le 5$ for which $x_i + x_j + x_k$ divides $S_A$. Find the largest possible value of $T_A$.

2015 Czech-Polish-Slovak Match, 2

Tags: set , combinatorics
A family of sets $F$ is called perfect if the following condition holds: For every triple of sets $X_1, X_2, X_3\in F$, at least one of the sets $$ (X_1\setminus X_2)\cap X_3,$$ $$(X_2\setminus X_1)\cap X_3$$ is empty. Show that if $F$ is a perfect family consisting of some subsets of a given finite set $U$, then $\left\lvert F\right\rvert\le\left\lvert U\right\rvert+1$. [i]Proposed by Michał Pilipczuk[/i]

2013 VJIMC, Problem 3

Let $S$ be a finite set of integers. Prove that there exists a number $c$ depending on $S$ such that for each non-constant polynomial $f$ with integer coefficients the number of integers $k$ satisfying $f(k)\in S$ does not exceed $\max(\deg f,c)$.

1999 Junior Balkan Team Selection Tests - Moldova, 5

Let the set $M =\{\frac{1998}{1999},\frac{1999}{2000} \}$. The set $M$ is completed with new fractions according to the rule: take two distinct fractions$ \frac{p_1}{q_1}$ and $\frac{p_2}{q_2}$ from $M$ thus there are no other numbers in $M$ located between them and a new fraction is formed, $\frac{p_1+p_2}{q_1+q_2}$ which is included in $M$, etc. Show that, after each procedure, the newly obtained fraction is irreducible and is different from the fractions previously included in $M$.

2011 Junior Balkan Team Selection Tests - Romania, 2

Tags: set , algebra
Find all the finite sets $A$ of real positive numbers having at least two elements, with the property that $a^2 + b^2 \in A$ for every $a, b \in A$ with $a \ne b$

2001 Regional Competition For Advanced Students, 4

Tags: algebra , sequence , set
Let $A_o =\{1, 2\}$ and for $n> 0, A_n$ results from $A_{n-1}$ by adding the natural numbers to $A_{n-1}$ which can be represented as the sum of two different numbers from $A_{n-1}$. Let $a_n = |A_n |$ be the number of numbers in $A_n$. Determine $a_n$ as a function of $n$.

2014 India PRMO, 8

Let $S$ be a set of real numbers with mean $M$. If the means of the sets $S\cup \{15\}$ and $S\cup \{15,1\}$ are $M + 2$ and $M + 1$, respectively, then how many elements does $S$ have?