This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 37

1975 All Soviet Union Mathematical Olympiad, 218

The world and the european champion are determined in the same tournament carried in one round. There are $20$ teams and $k$ of them are european. The european champion is determined according to the results of the games only between those $k$ teams. What is the greatest $k$ such that the situation, when the single european champion is the single world outsider, is possible if: a) it is hockey (draws allowed)? b) it is volleyball (no draws)?

2012 Bosnia And Herzegovina - Regional Olympiad, 2

On football toornament there were $4$ teams participating. Every team played exactly one match with every other team. For the win, winner gets $3$ points, while if draw both teams get $1$ point. If at the end of tournament every team had different number of points and first place team had $6$ points, find the points of other teams

1972 All Soviet Union Mathematical Olympiad, 173

One-round hockey tournament is finished (each plays with each one time, the winner gets $2$ points, looser -- $0$, and $1$ point for draw). For arbitrary subgroup of teams there exists a team (may be from that subgroup) that has got an odd number of points in the games with the teams of the subgroup. Prove that there was even number of the participants.

1985 Tournament Of Towns, (097) 1

Eight football teams participate in a tournament of one round (each team plays each other team once) . There are no draws. Prove that it is possible at the conclusion of the tournament to be able to find $4$ teams , say $A, B, C$ and $D$ so that $A$ defeated $B, C$ and $D, B$ defeated $C$ and $D$ , and $C$ defeated $D$ .

2022 Kyiv City MO Round 1, Problem 5

$2022$ teams participated in an underwater polo tournament, each two teams played exactly once against each other. Team receives $2, 1, 0$ points for win, draw, and loss correspondingly. It turned out that all teams got distinct numbers of points. In the final standings the teams were ordered by the total number of points. A few days later, organizers realized that the results in the final standings were wrong due to technical issues: in fact, each match that ended with a draw according to them in fact had a winner, and each match with a winner in fact ended with a draw. It turned out that all teams still had distinct number of points! They corrected the standings, and ordered them by the total number of points. Could the correct order turn out to be the reversed initial order? [i](Proposed by Fedir Yudin)[/i]

1955 Moscow Mathematical Olympiad, 305

$25$ chess players are going to participate in a chess tournament. All are on distinct skill levels, and of the two players the one who plays better always wins. What is the least number of games needed to select the two best players?

2009 Dutch Mathematical Olympiad, 3

A tennis tournament has at least three participants. Every participant plays exactly one match against every other participant. Moreover, every participant wins at least one of the matches he plays. (Draws do not occur in tennis matches.) Show that there are three participants $A, B $ and $C$ for which the following holds: $A$ wins against $B, B$ wins against $C$, and $C$ wins against $A$.

2022 Iran MO (3rd Round), 1

For each natural number $k$ find the least number $n$ such that in every tournament with $n$ vertices, there exists a vertex with in-degree and out-degree at least $k$. (Tournament is directed complete graph.)

1973 All Soviet Union Mathematical Olympiad, 179

The tennis federation has assigned numbers to $1024$ sportsmen, participating in the tournament, according to their skill. (The tennis federation uses the olympic system of tournaments. The looser in the pair leaves, the winner meets with the winner of another pair. Thus, in the second tour remains $512$ participants, in the third -- $256$, et.c. The winner is determined after the tenth tour.) It comes out, that in the play between the sportsmen whose numbers differ more than on $2$ always win that whose number is less. What is the greatest possible number of the winner?

2025 Kyiv City MO Round 1, Problem 3

In the Faculty of Cybernetics football championship, \( n \geq 3 \) teams participated. The competition was held in a round-robin format, meaning that each team played against every other team exactly once. For a win, a team earns 3 points, for a loss no points are awarded, and for a draw, both teams receive 1 point each. It turned out that the winning team scored strictly more points than any other team and had at most as many wins as losses. What is the smallest \( n \) for which this could happen? [i]Proposed by Bogdan Rublov[/i]

2000 Tournament Of Towns, 6

In a chess tournament , every two participants play each other exactly once. A win is worth one point , a draw is worth half a point and a loss is worth zero points. Looking back at the end of the tournament, a game is called an upset if the total number of points obtained by the winner of that game is less than the total number of points obtained by the loser of that game. (a) Prove that the number of upsets is always strictly less than three-quarters of the total number of games in the tournament. (b) Prove that three-quarters cannot be replaced by a smaller number. (S Tokarev) PS. part (a) for Juniors, both parts for Seniors

1987 All Soviet Union Mathematical Olympiad, 441

Ten sportsmen have taken part in a table-tennis tournament (each pair has met once only, no draws). Let $xi$ be the number of $i$-th player victories, $yi$ -- losses. Prove that $$x_1^2 + ... + x_{10}^2 = y_1^2 + ... + y_{10}^2$$