This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 117

2011 Argentina National Olympiad, 2

Three players $A,B$ and $C$ take turns removing stones from a pile of $N$ stones. They move in the order $A,B,C,A,B,C,…A$. The game begins, and the one who takes out the last stone loses the game. The players $A$ and $C$ team up against $B$ , they agree on a joint strategy. $B$ can take in each play $1,2,3,4$ or $5$ stones, while $A$ and $C$, they can each get $1,2$ or $3$ stones each turn. Determine for what values ​​of $N$ have winning strategy $A$ and $C$, and for what values ​​the winning strategy is from $B$. .

2019 Regional Olympiad of Mexico Northwest, 1

Jose and Maria play the following game: Maria writes $2019$ positive integers different on the blackboard. Jose deletes some of them (possibly none, but not all) and write to the left of each of the remaining numbers a sign $+$or a sign $-$. Then the sum written on the board is calculated. If the result is a multiple of $2019$, Jose wins the game, if not, Maria wins. Determine which of the two has a winning strategy.

2016 Argentina National Olympiad, 3

Agustín and Lucas, by turns, each time mark a box that has not yet been marked on a $101\times 101$ grid board. Augustine starts the game. You cannot check a box that already has two checked boxes in its row or column. The one who can't make his move loses. Decide which of the two players has a winning strategy.

2019 Lusophon Mathematical Olympiad, 6

Two players Arnaldo and Betania play alternately, with Arnaldo being the first to play. Initially there are two piles of stones containing $x$ and $y$ stones respectively. In each play, it is possible to perform one of the following operations: 1. Choose two non-empty piles and take one stone from each pile. 2. Choose a pile with an odd amount of stones, take one of their stones and, if possible, split into two piles with the same amount of stones. The player who cannot perform either of operations 1 and 2 loses. Determine who has the winning strategy based on $x$ and $y$.

2000 Kazakhstan National Olympiad, 1

Two guys are playing the game "Sea Battle-2000". On the board $ 1 \times 200 $, they take turns placing the letter "$ S $" or "$ O $" on the empty squares of the board. The winner is the one who gets the word "$ SOS $" first. Prove that the second player wins when played correctly.

2010 Belarus Team Selection Test, 5.1

The following expression $x^{30} + *x^{29} +...+ *x+8 = 0$ is written on a blackboard. Two players $A$ and $B$ play the following game. $A$ starts the game. He replaces all the asterisks by the natural numbers from $1$ to $30$ (using each of them exactly once). Then player $B$ replace some of" $+$ "by ” $-$ "(by his own choice). The goal of $A$ is to get the equation having a real root greater than $10$, while the goal of $B$ is to get the equation having a real root less that or equal to $10$. If both of the players achieve their goals or nobody of them achieves his goal, then the result of the game is a draw. Otherwise, the player achieving his goal is a winner. Who of the players wins if both of them play to win? (I.Bliznets)

2018 Regional Olympiad of Mexico Northwest, 2

Alicia and Bob take turns writing words on a blackboard. The rules are as follows: a) Any word that has been written cannot be rewritten. b) A player can only write a permutation of the previous word, or can simply simply remove one letter (whatever you want) from the previous word. c) The first person who cannot write another word loses. If Alice starts by typing the word ''Olympics" and Bob's next turn, who, do you think, has a winning strategy and what is it?

2020 Balkan MO Shortlist, C3

Odin and Evelyn are playing a game, Odin going first. There are initially $3k$ empty boxes, for some given positive integer $k$. On each player’s turn, they can write a non-negative integer in an empty box, or erase a number in a box and replace it with a strictly smaller non-negative integer. However, Odin is only ever allowed to write odd numbers, and Evelyn is only allowed to write even numbers. The game ends when either one of the players cannot move, in which case the other player wins; or there are exactly $k$ boxes with the number $0$, in which case Evelyn wins if all other boxes contain the number $1$, and Odin wins otherwise. Who has a winning strategy? $Agnijo \ Banerjee \ , United \ Kingdom$

2003 Estonia National Olympiad, 5

The game [i]Clobber [/i] is played by two on a strip of $2k$ squares. At the beginning there is a piece on each square, the pieces of both players stand alternatingly. At each move the player shifts one of his pieces to the neighbouring square that holds a piece of his opponent and removes his opponent’s piece from the table. The moves are made in turn, the player whose opponent cannot move anymore is the winner. Prove that if for some $k$ the player who does not start the game has the winning strategy, then for $k + 1$ and $k + 2$ the player who makes the first move has the winning strategy.

2009 Bundeswettbewerb Mathematik, 1

At the start of a game there are three boxes with $2008, 2009$ and $2010$ game pieces Anja and Bernd play in turns according to the following rule: [i]When it is your turn, select two boxes, empty them and then distribute the pieces from the third box to the three boxes, such that no box may remain empty.If you can no longer complete a turn, you have lost. [/i] Who has a winning strategy when Anja starts?

2021 Francophone Mathematical Olympiad, 2

Albert and Beatrice play a game. $2021$ stones lie on a table. Starting with Albert, they alternatively remove stones from the table, while obeying the following rule. At the $n$-th turn, the active player (Albert if $n$ is odd, Beatrice if $n$ is even) can remove from $1$ to $n$ stones. Thus, Albert first removes $1$ stone; then, Beatrice can remove $1$ or $2$ stones, as she wishes; then, Albert can remove from $1$ to $3$ stones, and so on. The player who removes the last stone on the table loses, and the other one wins. Which player has a strategy to win regardless of the other player's moves?

2025 Bundeswettbewerb Mathematik, 4

For integers $m,n \ge 3$ we consider a $m \times n$ rectangular frame, consisting of the $2m+2n-4$ boundary squares of a $m \times n$ rectangle. Renate and Erhard play the following game on this frame, with Renate to start the game. In a move, a player colours a rectangular area consisting of a single or several white squares. If there are any more white squares, they have to form a connected region. The player who moves last wins the game. Determine all pairs $(m,n)$ for which Renate has a winning strategy.

2017 Puerto Rico Team Selection Test, 4

Alberto and Bianca play a game on a square board. Alberto begins. On their turn, players place a $1 \times 2$ or $2 \times 1$ domino on two empty squares on the board. The player who cannot put a domino loses. Determine who has a winning strategy (and prove it) if the board is: i) $3 \times 3$ ii) $3 \times 4$

2021 Greece JBMO TST, 2

Anna and Basilis play a game writing numbers on a board as follows: The two players play in turns and if in the board is written the positive integer $n$, the player whose turn is chooses a prime divisor $p$ of $n$ and writes the numbers $n+p$. In the board, is written at the start number $2$ and Anna plays first. The game is won by whom who shall be first able to write a number bigger or equal to $31$. Find who player has a winning strategy, that is who may writing the appropriate numbers may win the game no matter how the other player plays.

1995 Bulgaria National Olympiad, 3

Two players $A$ and $B$ take stones one after the other from a heap with $n \ge 2$ stones. $A$ begins the game and takes at least one stone, but no more than $n -1$ stones. Thereafter, a player on turn takes at least one, but no more than the other player has taken before him. The player who takes the last stone wins. Who of the players has a winning strategy?

2018 Auckland Mathematical Olympiad, 4

Alice and Bob are playing the following game: They take turns writing on the board natural numbers not exceeding $2018$ (to write the number twice is forbidden). Alice begins. A player wins if after his or her move there appear three numbers on the board which are in arithmetic progression. Which player has a winning strategy?

2022 Regional Olympiad of Mexico West, 6

There is a $2021 \times 2023$ board that has a white piece in the central square, on which Mich and Moka are going to play in turns. First Mich places a green token on any free space so that it is not in the same row or column as the white token, then Moka places a red token on any free space so that it is not in the same row or column as the white token. white or green. From now on, Mich will place green tokens and Moka will place red tokens alternately according to the following rules: $\bullet$ For the placed piece there must be another piece of the same color in its row or column, such that there is no other piece between both pieces. $\bullet$ If there is at least one box that meets the previous rule, then it is mandatory to place a token. When a token is placed, it changes all the tokens that are on squares adjacent to it to the same color. The game ends when one of the players can no longer place tiles. If when the game ends the board has more green tiles then Mich wins, and if it has more red tiles then Moka wins. Determine if either player has a winning strategy.

2012 NZMOC Camp Selection Problems, 5

Chris and Michael play a game on a $5 \times 5$ board, initially containing some black and white counters as shown below: [img]https://cdn.artofproblemsolving.com/attachments/8/0/42e1a64b3524a0db722c007b8d6b8eddf2d9e5.png[/img] Chris begins by removing any black counter, and sliding a white counter from an adjacent square onto the empty square. From that point on, the players take turns. Michael slides a black counter onto an adjacent empty square, and Chris does the same with white counters (no more counters are removed). If a player has no legal move, then he loses. (a) Show that, even if Chris and Michael play cooperatively, the game will come to an end. (b) Which player has a winning strategy?

2021 Dutch IMO TST, 1

Let $m$ and $n$ be natural numbers with $mn$ even. Jetze is going to cover an $m \times n$ board (consisting of $m$ rows and $n$ columns) with dominoes, so that every domino covers exactly two squares, dominos do not protrude or overlap, and all squares are covered by a domino. Merlin then moves all the dominoe color red or blue on the board. Find the smallest non-negative integer $V$ (in terms of $m$ and $n$) so that Merlin can always ensure that in each row the number squares covered by a red domino and the number of squares covered by a blue one dominoes are not more than $V$, no matter how Jetze covers the board.

May Olympiad L2 - geometry, 2022.5

The vertices of a regular polygon with $N$ sides are marked on the blackboard. Ana and Beto play alternately, Ana begins. Each player, in turn, must do the following: $\bullet$ join two vertices with a segment, without cutting another already marked segment; or $\bullet$ delete a vertex that does not belong to any marked segment. The player who cannot take any action on his turn loses the game. Determine which of the two players can guarantee victory: a) if $N=28$ b) if $N=29$

2005 Tournament of Towns, 6

John and James wish to divide $25$ coins, of denominations $1, 2, 3, \ldots , 25$ kopeks. In each move, one of them chooses a coin, and the other player decides who must take this coin. John makes the initial choice of a coin, and in subsequent moves, the choice is made by the player having more kopeks at the time. In the event that there is a tie, the choice is made by the same player in the preceding move. After all the coins have been taken, the player with more kokeps wins. Which player has a winning strategy? [i](6 points)[/i]

2024 Austrian MO National Competition, 3

Initially, the numbers $1, 2, \dots, 2024$ are written on a blackboard. Trixi and Nana play a game, taking alternate turns. Trixi plays first. The player whose turn it is chooses two numbers $a$ and $b$, erases both, and writes their (possibly negative) difference $a-b$ on the blackboard. This is repeated until only one number remains on the blackboard after $2023$ moves. Trixi wins if this number is divisible by $3$, otherwise Nana wins. Which of the two has a winning strategy? [i](Birgit Vera Schmidt)[/i]

2022 South East Mathematical Olympiad, 8

Tao plays the following game:given a constant $v>1$;for any positive integer $m$,the time between the $m^{th}$ round and the $(m+1)^{th}$ round of the game is $2^{-m}$ seconds;Tao chooses a circular safe area whose radius is $2^{-m+1}$ (with the border,and the choosing time won't be calculated) on the plane in the $m^{th}$ round;the chosen circular safe area in each round will keep its center fixed,and its radius will decrease at the speed $v$ in the rest of the time(if the radius decreases to $0$,erase the circular safe area);if it's possible to choose a circular safe area inside the union of the rest safe areas sometime before the $100^{th}$ round(including the $100^{th}$ round),then Tao wins the game.If Tao has a winning strategy,find the minimum value of $\biggl\lfloor\frac{1}{v-1}\biggr\rfloor$.

2022 May Olympiad, 4

Ana and Bruno have an $8 \times 8$ checkered board. Ana paints each of the $64$ squares with some color. Then Bruno chooses two rows and two columns on the board and looks at the $4$ squares where they intersect. Bruno's goal is for these $4$ squares to be the same color. How many colors, at least, must Ana use so that Bruno can't fulfill his objective? Show how you can paint the board with this amount of colors and explain because if you use less colors then Bruno can always fulfill his goal.

2021 Dutch BxMO TST, 4

Jesse and Tjeerd are playing a game. Jesse has access to $n\ge 2$ stones. There are two boxes: in the black box there is room for half of the stones (rounded down) and in the white box there is room for half of the stones (rounded up). Jesse and Tjeerd take turns, with Jesse starting. Jesse grabs in his turn, always one new stone, writes a positive real number on the stone and places put him in one of the boxes that isn't full yet. Tjeerd sees all these numbers on the stones in the boxes and on his turn may move any stone from one box to the other box if it is not yet full, but he may also choose to do nothing. The game stops when both boxes are full. If then the total value of the stones in the black box is greater than the total value of the stones in the white box, Jesse wins; otherwise win Tjeerd. For every $n \ge 2$, determine who can definitely win (and give a corresponding winning strategy).