This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 252

2009 ISI B.Math Entrance Exam, 3

Let $1,2,3,4,5,6,7,8,9,11,12,\cdots$ be the sequence of all positive integers which do not contain the digit zero. Write $\{a_n\}$ for this sequence. By comparing with a geometric series, show that $\sum_{k=1}^n \frac{1}{a_k} < 90$.

2001 CentroAmerican, 2

Let $ a,b$ and $ c$ real numbers such that the equation $ ax^2\plus{}bx\plus{}c\equal{}0$ has two distinct real solutions $ p_1,p_2$ and the equation $ cx^2\plus{}bx\plus{}a\equal{}0$ has two distinct real solutions $ q_1,q_2$. We know that the numbers $ p_1,q_1,p_2,q_2$ in that order, form an arithmetic progression. Show that $ a\plus{}c\equal{}0$.