This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

2002 Vietnam National Olympiad, 2

Determine for which $ n$ positive integer the equation: $ a \plus{} b \plus{} c \plus{} d \equal{} n \sqrt {abcd}$ has positive integer solutions.

2010 Hanoi Open Mathematics Competitions, 7

Determine all positive integer $a$ such that the equation $2x^2 - 30x + a = 0$ has two prime roots, i.e. both roots are prime numbers.

2001 Flanders Math Olympiad, 4

A student concentrates on solving quadratic equations in $\mathbb{R}$. He starts with a first quadratic equation $x^2 + ax + b = 0$ where $a$ and $b$ are both different from 0. If this first equation has solutions $p$ and $q$ with $p \leq q$, he forms a second quadratic equation $x^2 + px + q = 0$. If this second equation has solutions, he forms a third quadratic equation in an identical way. He continues this process as long as possible. Prove that he will not obtain more than five equations.

2008 AIME Problems, 13

Let \[ p(x,y) \equal{} a_0 \plus{} a_1x \plus{} a_2y \plus{} a_3x^2 \plus{} a_4xy \plus{} a_5y^2 \plus{} a_6x^3 \plus{} a_7x^2y \plus{} a_8xy^2 \plus{} a_9y^3. \]Suppose that \begin{align*}p(0,0) &\equal{} p(1,0) \equal{} p( \minus{} 1,0) \equal{} p(0,1) \equal{} p(0, \minus{} 1) \\&\equal{} p(1,1) \equal{} p(1, \minus{} 1) \equal{} p(2,2) \equal{} 0.\end{align*} There is a point $ \left(\tfrac {a}{c},\tfrac {b}{c}\right)$ for which $ p\left(\tfrac {a}{c},\tfrac {b}{c}\right) \equal{} 0$ for all such polynomials, where $ a$, $ b$, and $ c$ are positive integers, $ a$ and $ c$ are relatively prime, and $ c > 1$. Find $ a \plus{} b \plus{} c$.

1953 AMC 12/AHSME, 44

In solving a problem that reduces to a quadratic equation one student makes a mistake only in the constant term of the equation and obtains $ 8$ and $ 2$ for the roots. Another student makes a mistake only in the coefficient of the first degree term and find $ \minus{}9$ and $ \minus{}1$ for the roots. The correct equation was: $ \textbf{(A)}\ x^2\minus{}10x\plus{}9\equal{}0 \qquad\textbf{(B)}\ x^2\plus{}10x\plus{}9\equal{}0 \qquad\textbf{(C)}\ x^2\minus{}10x\plus{}16\equal{}0\\ \textbf{(D)}\ x^2\minus{}8x\minus{}9\equal{}0 \qquad\textbf{(E)}\ \text{none of these}$

2002 Tournament Of Towns, 3

Show that if the last digit of the number $x^2+xy+y^2$ is $0$ (where $x,y\in\mathbb{N}$ ) then last two digits are zero.

2008 Vietnam National Olympiad, 6

Let $ x, y, z$ be distinct non-negative real numbers. Prove that \[ \frac{1}{(x\minus{}y)^2} \plus{} \frac{1}{(y\minus{}z)^2} \plus{} \frac{1}{(z\minus{}x)^2} \geq \frac{4}{xy \plus{} yz \plus{} zx}.\] When does the equality hold?

1953 AMC 12/AHSME, 36

Tags: quadratic
Determine $ m$ so that $ 4x^2\minus{}6x\plus{}m$ is divisible by $ x\minus{}3$. The obtained value, $ m$, is an exact divisor of: $ \textbf{(A)}\ 12 \qquad\textbf{(B)}\ 20 \qquad\textbf{(C)}\ 36 \qquad\textbf{(D)}\ 48 \qquad\textbf{(E)}\ 64$

1996 Brazil National Olympiad, 6

Let p(x) be the polynomial $x^3 + 14x^2 - 2x + 1$. Let $p^n(x)$ denote $p(p^(n-1)(x))$. Show that there is an integer N such that $p^N(x) - x$ is divisible by 101 for all integers x.

2006 Polish MO Finals, 2

Find all positive integers $k$ for which number $3^k+5^k$ is a power of some integer with exponent greater than $1$.

2010 AIME Problems, 9

Let $ (a,b,c)$ be the real solution of the system of equations $ x^3 \minus{} xyz \equal{} 2$, $ y^3 \minus{} xyz \equal{} 6$, $ z^3 \minus{} xyz \equal{} 20$. The greatest possible value of $ a^3 \plus{} b^3 \plus{} c^3$ can be written in the form $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.

2024 Greece National Olympiad, 1

Tags: quadratic , algebra
Let $a, b, c$ be reals such that some two of them have difference greater than $\frac{1}{2 \sqrt{2}}$. Prove that there exists an integer $x$, such that $$x^2-4(a+b+c)x+12(ab+bc+ca)<0.$$

2008 India National Olympiad, 2

Find all triples $ \left(p,x,y\right)$ such that $ p^x\equal{}y^4\plus{}4$, where $ p$ is a prime and $ x$ and $ y$ are natural numbers.

2011 All-Russian Olympiad, 2

Tags: algebra , quadratic
Nine quadratics, $x^2+a_1x+b_1, x^2+a_2x+b_2,...,x^2+a_9x+b_9$ are written on the board. The sequences $a_1, a_2,...,a_9$ and $b_1, b_2,...,b_9$ are arithmetic. The sum of all nine quadratics has at least one real root. What is the the greatest possible number of original quadratics that can have no real roots?

2008 South africa National Olympiad, 6

Find all function pairs $(f,g)$ where each $f$ and $g$ is a function defined on the integers and with values, such that, for all integers $a$ and $b$, \[f(a+b)=f(a)g(b)+g(a)f(b)\\ g(a+b)=g(a)g(b)-f(a)f(b).\]

1987 AIME Problems, 11

Find the largest possible value of $k$ for which $3^{11}$ is expressible as the sum of $k$ consecutive positive integers.

1950 AMC 12/AHSME, 13

Tags: quadratic
The roots of $ (x^2\minus{}3x\plus{}2)(x)(x\minus{}4)\equal{}0$ are: $\textbf{(A)}\ 4\qquad \textbf{(B)}\ 0\text{ and }4 \qquad \textbf{(C)}\ 1\text{ and }2 \qquad \textbf{(D)}\ 0,1,2\text{ and }4\qquad \textbf{(E)}\ 1,2\text{ and }4$

1985 Balkan MO, 2

Let $a,b,c,d \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ be real numbers such that $\sin{a}+\sin{b}+\sin{c}+\sin{d}=1$ and $\cos{2a}+\cos{2b}+\cos{2c}+\cos{2d}\geq \frac{10}{3}$. Prove that $a,b,c,d \in [0, \frac{\pi}{6}]$

1995 India National Olympiad, 2

Show that there are infintely many pairs $(a,b)$ of relatively prime integers (not necessarily positive) such that both the equations \begin{eqnarray*} x^2 +ax +b &=& 0 \\ x^2 + 2ax + b &=& 0 \\ \end{eqnarray*} have integer roots.

2014 Online Math Open Problems, 18

Tags: quadratic
Find the number of pairs $(m,n)$ of integers with $-2014\le m,n\le 2014$ such that $x^3+y^3 = m + 3nxy$ has infinitely many integer solutions $(x,y)$. [i]Proposed by Victor Wang[/i]

2006 AMC 12/AHSME, 24

Let $ S$ be the set of all points $ (x,y)$ in the coordinate plane such that $ 0\le x\le \frac \pi2$ and $ 0\le y\le \frac \pi2$. What is the area of the subset of $ S$ for which \[ \sin^2 x \minus{} \sin x\sin y \plus{} \sin^2 y\le \frac 34? \]$ \textbf{(A) } \frac {\pi^2}9 \qquad \textbf{(B) } \frac {\pi^2}8 \qquad \textbf{(C) } \frac {\pi^2}6\qquad \textbf{(D) } \frac {3\pi^2}{16} \qquad \textbf{(E) } \frac {2\pi^2}9$

2000 All-Russian Olympiad, 1

Tags: quadratic , algebra
Let $a,b,c$ be distinct numbers such that the equations $x^2+ax+1=0$ and $x^2+bx+c=0$ have a common real root, and the equations $x^2+x+a=0$ and $x^2+cx+b$ also have a common real root. Compute the sum $a+b+c$.

2001 All-Russian Olympiad, 1

The polynomial $ P(x)\equal{}x^3\plus{}ax^2\plus{}bx\plus{}d$ has three distinct real roots. The polynomial $ P(Q(x))$, where $ Q(x)\equal{}x^2\plus{}x\plus{}2001$, has no real roots. Prove that $ P(2001)>\frac{1}{64}$.

1994 Flanders Math Olympiad, 4

Let $(f_i)$ be a sequence of functions defined by: $f_1(x)=x, f_n(x) = \sqrt{f_{n-1}(x)}-\dfrac14$. ($n\in \mathbb{N}, n\ge2$) (a) Prove that $f_n(x) \le f_{n-1}(x)$ for all x where both functions are defined. (b) Find for each $n$ the points of $x$ inside the domain for which $f_n(x)=x$.

1977 AMC 12/AHSME, 21

For how many values of the coefficient $a$ do the equations \begin{align*}x^2+ax+1=0 \\ x^2-x-a=0\end{align*} have a common real solution? $\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \text{infinitely many}$