This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 20

2021 MOAA, 8

Tags: accuracy
Will has a magic coin that can remember previous flips. If the coin has already turned up heads $m$ times and tails $n$ times, the probability that the next flip turns up heads is exactly $\frac{m+1}{m+n+2}$. Suppose that the coin starts at $0$ flips. The probability that after $10$ coin flips, heads and tails have both turned up exactly $5$ times can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Nathan Xiong[/i]

2021 MOAA, 9

Tags: accuracy
Let $S$ be the set of ordered pairs $(x,y)$ of positive integers for which $x+y\le 20$. Evaluate \[\sum_{(x, y) \in S} (-1)^{x+y}xy.\] [i]Proposed by Andrew Wen[/i]

MOAA Accuracy Rounds, 2021.8

Tags: accuracy
Will has a magic coin that can remember previous flips. If the coin has already turned up heads $m$ times and tails $n$ times, the probability that the next flip turns up heads is exactly $\frac{m+1}{m+n+2}$. Suppose that the coin starts at $0$ flips. The probability that after $10$ coin flips, heads and tails have both turned up exactly $5$ times can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Nathan Xiong[/i]

MOAA Accuracy Rounds, 2021.9

Tags: accuracy
Let $S$ be the set of ordered pairs $(x,y)$ of positive integers for which $x+y\le 20$. Evaluate \[\sum_{(x, y) \in S} (-1)^{x+y}xy.\] [i]Proposed by Andrew Wen[/i]

MOAA Accuracy Rounds, 2021.5

Tags: accuracy
If $x$, $y$, $z$ are nonnegative integers satisfying the equation below, then compute $x+y+z$. \[\left(\frac{16}{3}\right)^x\times \left(\frac{27}{25}\right)^y\times \left(\frac{5}{4}\right)^z=256.\] [i]Proposed by Jeffrey Shi[/i]

MOAA Accuracy Rounds, 2021.4

Tags: accuracy
Compute the number of two-digit numbers $\overline{ab}$ with nonzero digits $a$ and $b$ such that $a$ and $b$ are both factors of $\overline{ab}$. [i]Proposed by Nathan Xiong[/i]

MOAA Accuracy Rounds, 2021.6

Tags: accuracy
Let $\triangle ABC$ be a triangle in a plane such that $AB=13$, $BC=14$, and $CA=15$. Let $D$ be a point in three-dimensional space such that $\angle{BDC}=\angle{CDA}=\angle{ADB}=90^\circ$. Let $d$ be the distance from $D$ to the plane containing $\triangle ABC$. The value $d^2$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by William Yue[/i]

MOAA Accuracy Rounds, 2021.3

Tags: accuracy
Arnav is placing three rectangles into a $3 \times 3$ grid of unit squares. He has a $1\times 3$ rectangle, a $1\times 2$ rectangle, and a $1\times 1$ rectangle. He must place the rectangles onto the grid such that the edges of the rectangles align with the gridlines of the grid. If he is allowed to rotate the rectangles, how many ways can he place the three rectangles into the grid, without overlap? [i]Proposed by William Yue[/i]

2021 MOAA, 6

Tags: accuracy
Let $\triangle ABC$ be a triangle in a plane such that $AB=13$, $BC=14$, and $CA=15$. Let $D$ be a point in three-dimensional space such that $\angle{BDC}=\angle{CDA}=\angle{ADB}=90^\circ$. Let $d$ be the distance from $D$ to the plane containing $\triangle ABC$. The value $d^2$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by William Yue[/i]

2021 MOAA, 10

Tags: accuracy
In $\triangle ABC$, let $X$ and $Y$ be points on segment $BC$ such that $AX=XB=20$ and $AY=YC=21$. Let $J$ be the $A$-excenter of triangle $\triangle AXY$. Given that $J$ lies on the circumcircle of $\triangle ABC$, the length of $BC$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Andrew Wen[/i]

2021 MOAA, 2

Tags: accuracy
On Andover's campus, Graves Hall is $60$ meters west of George Washington Hall, and George Washington Hall is $80$ meters north of Paresky Commons. Jessica wants to walk from Graves Hall to Paresky Commons. If she first walks straight from Graves Hall to George Washington Hall and then walks straight from George Washington Hall to Paresky Commons, it takes her $8$ minutes and $45$ seconds while walking at a constant speed. If she walks with the same speed directly from Graves Hall to Paresky Commons, how much time does she save, in seconds? [i]Proposed by Nathan Xiong[/i]

MOAA Accuracy Rounds, 2021.10

Tags: accuracy
In $\triangle ABC$, let $X$ and $Y$ be points on segment $BC$ such that $AX=XB=20$ and $AY=YC=21$. Let $J$ be the $A$-excenter of triangle $\triangle AXY$. Given that $J$ lies on the circumcircle of $\triangle ABC$, the length of $BC$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Andrew Wen[/i]

2021 MOAA, 5

Tags: accuracy
If $x$, $y$, $z$ are nonnegative integers satisfying the equation below, then compute $x+y+z$. \[\left(\frac{16}{3}\right)^x\times \left(\frac{27}{25}\right)^y\times \left(\frac{5}{4}\right)^z=256.\] [i]Proposed by Jeffrey Shi[/i]

2021 MOAA, 7

Tags: accuracy
Jeffrey rolls fair three six-sided dice and records their results. The probability that the mean of these three numbers is greater than the median of these three numbers can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Nathan Xiong[/i]

2021 MOAA, 4

Tags: accuracy
Compute the number of two-digit numbers $\overline{ab}$ with nonzero digits $a$ and $b$ such that $a$ and $b$ are both factors of $\overline{ab}$. [i]Proposed by Nathan Xiong[/i]

MOAA Accuracy Rounds, 2021.1

Tags: accuracy
Evaluate \[2\times (2\times (2\times (2\times (2\times (2\times 2-2)-2)-2)-2)-2)-2.\] [i]Proposed by Nathan Xiong[/i]

MOAA Accuracy Rounds, 2021.7

Tags: accuracy
Jeffrey rolls fair three six-sided dice and records their results. The probability that the mean of these three numbers is greater than the median of these three numbers can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$. [i]Proposed by Nathan Xiong[/i]

MOAA Accuracy Rounds, 2021.2

Tags: accuracy
On Andover's campus, Graves Hall is $60$ meters west of George Washington Hall, and George Washington Hall is $80$ meters north of Paresky Commons. Jessica wants to walk from Graves Hall to Paresky Commons. If she first walks straight from Graves Hall to George Washington Hall and then walks straight from George Washington Hall to Paresky Commons, it takes her $8$ minutes and $45$ seconds while walking at a constant speed. If she walks with the same speed directly from Graves Hall to Paresky Commons, how much time does she save, in seconds? [i]Proposed by Nathan Xiong[/i]

2021 MOAA, 1

Tags: accuracy
Evaluate \[2\times (2\times (2\times (2\times (2\times (2\times 2-2)-2)-2)-2)-2)-2.\] [i]Proposed by Nathan Xiong[/i]

2021 MOAA, 3

Tags: accuracy
Arnav is placing three rectangles into a $3 \times 3$ grid of unit squares. He has a $1\times 3$ rectangle, a $1\times 2$ rectangle, and a $1\times 1$ rectangle. He must place the rectangles onto the grid such that the edges of the rectangles align with the gridlines of the grid. If he is allowed to rotate the rectangles, how many ways can he place the three rectangles into the grid, without overlap? [i]Proposed by William Yue[/i]