This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 83

1983 IMO Shortlist, 18

Let $a,b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x,y,z$ are non-negative integers.

2009 China Team Selection Test, 6

Determine whether there exists an arithimethical progression consisting of 40 terms and each of whose terms can be written in the form $ 2^m \plus{} 3^n$ or not. where $ m,n$ are nonnegative integers.

1976 IMO Shortlist, 12

The polynomial $1976(x+x^2+ \cdots +x^n)$ is decomposed into a sum of polynomials of the form $a_1x + a_2x^2 + \cdots + a_nx^n$, where $a_1, a_2, \ldots , a_n$ are distinct positive integers not greater than $n$. Find all values of $n$ for which such a decomposition is possible.

2012 Romanian Masters In Mathematics, 3

Each positive integer is coloured red or blue. A function $f$ from the set of positive integers to itself has the following two properties: (a) if $x\le y$, then $f(x)\le f(y)$; and (b) if $x,y$ and $z$ are (not necessarily distinct) positive integers of the same colour and $x+y=z$, then $f(x)+f(y)=f(z)$. Prove that there exists a positive number $a$ such that $f(x)\le ax$ for all positive integers $x$. [i](United Kingdom) Ben Elliott[/i]

1995 IMO Shortlist, 7

Does there exist an integer $ n > 1$ which satisfies the following condition? The set of positive integers can be partitioned into $ n$ nonempty subsets, such that an arbitrary sum of $ n \minus{} 1$ integers, one taken from each of any $ n \minus{} 1$ of the subsets, lies in the remaining subset.

2007 IMO Shortlist, 3

Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$ [i]Author: Gerhard Wöginger, Netherlands[/i]

1996 IMO Shortlist, 3

Let $ k,m,n$ be integers such that $ 1 < n \leq m \minus{} 1 \leq k.$ Determine the maximum size of a subset $ S$ of the set $ \{1,2,3, \ldots, k\minus{}1,k\}$ such that no $ n$ distinct elements of $ S$ add up to $ m.$

2000 IMO Shortlist, 6

Let $ p$ and $ q$ be relatively prime positive integers. A subset $ S$ of $ \{0, 1, 2, \ldots \}$ is called [b]ideal[/b] if $ 0 \in S$ and for each element $ n \in S,$ the integers $ n \plus{} p$ and $ n \plus{} q$ belong to $ S.$ Determine the number of ideal subsets of $ \{0, 1, 2, \ldots \}.$