Found problems: 133
1987 IMO Longlists, 48
Find the number of partitions of the set $\{1, 2, \cdots, n\}$ into three subsets $A_1,A_2,A_3$, some of which may be empty, such that the following conditions are satisfied:
$(i)$ After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity.
$(ii)$ If $A_1,A_2,A_3$ are all nonempty, then in exactly one of them the minimal number is even .
[i]Proposed by Poland.[/i]
2000 Belarus Team Selection Test, 8.3
Prove that the set of positive integers cannot be partitioned into three nonempty subsets such that, for any two integers $x,y$ taken from two different subsets, the number $x^2-xy+y^2$ belongs to the third subset.
2020 Canadian Mathematical Olympiad Qualification, 2
Given a set $S$, of integers, an [i]optimal partition[/i] of S into sets T, U is a partition which minimizes the value $|t - u|$, where $t$ and $u$ are the sum of the elements of $T$ and U respectively.
Let $P$ be a set of distinct positive integers such that the sum of the elements of $P$ is $2k$ for a positive integer $k$, and no subset of $P$ sums to $k$.
Either show that there exists such a $P$ with at least $2020$ different optimal partitions, or show that such a $P$ does not exist.
2015 Junior Balkan Team Selection Tests - Romania, 3
Can we partition the positive integers in two sets such that none of the sets contains an infinite arithmetic progression of nonzero ratio ?
2021 SAFEST Olympiad, 1
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
1994 ITAMO, 1
Show that there exists an integer $N$ such that for all $n \ge N$ a square can be partitioned into $n$ smaller squares.
2008 Germany Team Selection Test, 1
Let $ A_0 \equal{} (a_1,\dots,a_n)$ be a finite sequence of real numbers. For each $ k\geq 0$, from the sequence $ A_k \equal{} (x_1,\dots,x_k)$ we construct a new sequence $ A_{k \plus{} 1}$ in the following way.
1. We choose a partition $ \{1,\dots,n\} \equal{} I\cup J$, where $ I$ and $ J$ are two disjoint sets, such that the expression
\[ \left|\sum_{i\in I}x_i \minus{} \sum_{j\in J}x_j\right|
\]
attains the smallest value. (We allow $ I$ or $ J$ to be empty; in this case the corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily.
2. We set $ A_{k \plus{} 1} \equal{} (y_1,\dots,y_n)$ where $ y_i \equal{} x_i \plus{} 1$ if $ i\in I$, and $ y_i \equal{} x_i \minus{} 1$ if $ i\in J$.
Prove that for some $ k$, the sequence $ A_k$ contains an element $ x$ such that $ |x|\geq\frac n2$.
[i]Author: Omid Hatami, Iran[/i]
2016 Bulgaria EGMO TST, 1
Is it possible to partition the set of integers into three disjoint sets so that for every positive integer $n$ the numbers $n$, $n-50$ and $n+1987$ belong to different sets?
2014 Greece JBMO TST, 4
Givan the set $S = \{1,2,3,....,n\}$. We want to partition the set $S$ into three subsets $A,B,C$ disjoint (to each other) with $A\cup B\cup C=S$ , such that the sums of their elements $S_{A} S_{B} S_{C}$ to be equal .Examine if this is possible when:
a) $n=2014$
b) $n=2015 $
c) $n=2018$
2024 Brazil National Olympiad, 2
A partition of a set \( A \) is a family of non-empty subsets of \( A \), such that any two distinct subsets in the family are disjoint, and the union of all subsets equals \( A \). We say that a partition of a set of integers \( B \) is [i]separated[/i] if each subset in the partition does [b]not[/b] contain consecutive integers. Prove that, for every positive integer \( n \), the number of partitions of the set \( \{1, 2, \dots, n\} \) is equal to the number of separated partitions of the set \( \{1, 2, \dots, n+1\} \).
For example, \( \{\{1,3\}, \{2\}\} \) is a separated partition of the set \( \{1,2,3\} \). On the other hand, \( \{\{1,2\}, \{3\}\} \) is a partition of the same set, but it is not separated since \( \{1,2\} \) contains consecutive integers.
1971 Czech and Slovak Olympiad III A, 3
Consider positive integers $2,3,\ldots,n-1,n$ where $n\ge96.$ Consider any partition in two (sub)sets. Show that at least one of these two sets always contains two numbers and their product. Show that the statement does not hold for $n=95,$ e.g. there is a partition without the mentioned property.
2016 Mathematical Talent Reward Programme, SAQ: P 6
Consider the set $A=\{1,2,3,4,5,6,7,8,9\}$.A partition $\Pi $ of $A$ is collection of disjoint sets whose union is $A$. For example, $\Pi_1=\{\{1,2\},\{3,4,5\},\{6,7,8,9\}\}$ and $\Pi _2 =\{\{1\},\{2,5\},\{3,7\},\{4,5,6,7,8,9\}\}$ can be considered as partitions of $A$. For, each $\Pi$ partition ,we consider the function $\pi$ defined on the elements of$A$. $\pi (x)$ denotes the cardinality of the subset in $\Pi$ which contains $x$. For, example in case of $\Pi_1$ , $\pi_1(1)=\pi_1(2)=2$, $\pi_1(3)=\pi_1(4)=\pi_1 (5)=3$, and $\pi_1(6)=\pi_1(7)=\pi_1(8)=\pi_1(9)=4$. For $\Pi_2$ we have $\pi_2(1)=1$, $\pi_2(2)=\pi_2(5)=2$, $\pi_2(3)=\pi_2(7)=2$ and $\pi_2(4)=\pi_2(6)=\pi_2(8)=\pi_2(9)=4$ Given any two partitions $\Pi$ and $\Pi '$, show that there are two numbers $x$ and $y$ in $A$, such that $\pi (x)= \pi '(x)$ and $ \pi (y)= \pi'(y)$.[[b]Hint:[/b] Consider the case where there is a block of size greater than or equal to 4 in a partition and the alternative case]
2011 Balkan MO Shortlist, C3
Is it possible to partition the set of positive integer numbers into two classes, none of which contains an infinite arithmetic sequence (with a positive ratio)? What is we impose the extra condition that in each class $\mathcal{C}$ of the partition, the set of difference
\begin{align*} \left\{ \min \{ n \in \mathcal{C} \mid n >m \} -m \mid m \in \mathcal{C} \right \} \end{align*}
be bounded?
2003 Putnam, 6
For a set $S$ of nonnegative integers, let $r_S(n)$ denote the number of ordered pairs $(s_1, s_2)$ such that $s_1 \in S$, $s_2 \in S$, $s_1 \neq s_2$, and $s_1 + s_2 = n$. Is it possible to partition the nonnegative integers into two sets $A$ and $B$ in such a way that $r_A(n) = r_B(n)$ for all $n$?
1972 IMO Longlists, 20
Let $n_1, n_2$ be positive integers. Consider in a plane $E$ two disjoint sets of points $M_1$ and $M_2$ consisting of $2n_1$ and $2n_2$ points, respectively, and such that no three points of the union $M_1 \cup M_2$ are collinear. Prove that there exists a straightline $g$ with the following property: Each of the two half-planes determined by $g$ on $E$ ($g$ not being included in either) contains exactly half of the points of $M_1$ and exactly half of the points of $M_2.$
Russian TST 2014, P2
Let $n$ be a positive integer, and let $A$ be a subset of $\{ 1,\cdots ,n\}$. An $A$-partition of $n$ into $k$ parts is a representation of n as a sum $n = a_1 + \cdots + a_k$, where the parts $a_1 , \cdots , a_k $ belong to $A$ and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{ a_1 , a_2 , \cdots , a_k \} $.
We say that an $A$-partition of $n$ into $k$ parts is optimal if there is no $A$-partition of $n$ into $r$ parts with $r<k$. Prove that any optimal $A$-partition of $n$ contains at most $\sqrt[3]{6n}$ different parts.
1978 IMO Shortlist, 1
The set $M = \{1, 2, . . . , 2n\}$ is partitioned into $k$ nonintersecting subsets $M_1,M_2, \dots, M_k,$ where $n \ge k^3 + k.$ Prove that there exist even numbers $2j_1, 2j_2, \dots, 2j_{k+1}$ in $M$ that are in one and the same subset $M_i$ $(1 \le i \le k)$ such that the numbers $2j_1 - 1, 2j_2 - 1, \dots, 2j_{k+1} - 1$ are also in one and the same subset $M_j (1 \le j \le k).$
2021 Germany Team Selection Test, 1
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
1998 Miklós Schweitzer, 7
Let P be a set of 4n points in the plane such that none of the three points are collinear. Prove that if n is large enough, then the following two statements are equivalent.
(i) P can be divided into n four-element subsets such that each subset forms the vertices of a convex quadrilateral.
(ii) P can not be split into two sets A and B, each with an odd number of elements, so that each convex quadrilateral whose vertices are in P has an even number of vertices in A and B.
2008 Postal Coaching, 4
Consider the set $A = \{1, 2, ..., n\}$, where $n \in N, n \ge 6$. Show that $A$ is the union of three pairwise disjoint sets, with the same cardinality and the same sum of their elements, if and only if $n$ is a multiple of $3$.
2007 Dutch Mathematical Olympiad, 2
Is it possible to partition the set $A = \{1, 2, 3, ... , 32, 33\}$ into eleven subsets that contain three integers each, such that for every one of these eleven subsets, one of the integers is equal to the sum of the other two? If so, give such a partition, if not, prove that such a partition cannot exist.
2015 International Zhautykov Olympiad, 2
Let $ A_n $ be the set of partitions of the sequence $ 1,2,..., n $ into several subsequences such that every two neighbouring terms of each subsequence have different parity,and $ B_n $ the set of partitions of the sequence $ 1,2,..., n $ into several subsequences such that all the terms of each subsequence have the same parity ( for example,the partition $ {(1,4,5,8),(2,3),(6,9),(7)} $ is an element of $ A_9 $,and the partition $ {(1,3,5),(2,4),(6)} $ is an element of $ B_6 $ ).
Prove that for every positive integer $ n $ the sets $ A_n $ and $ B_{n+1} $ contain the same number of elements.
2014 Contests, 4
Givan the set $S = \{1,2,3,....,n\}$. We want to partition the set $S$ into three subsets $A,B,C$ disjoint (to each other) with $A\cup B\cup C=S$ , such that the sums of their elements $S_{A} S_{B} S_{C}$ to be equal .Examine if this is possible when:
a) $n=2014$
b) $n=2015 $
c) $n=2018$
2021 Saudi Arabia IMO TST, 4
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
2008 IMAC Arhimede, 6
Consider the set of natural numbers $ U = \{1,2,3, ..., 6024 \} $ Prove that for any partition of the $ U $ in three subsets with $ 2008 $ elements each, we can choose a number in each subset so that one of the numbers is the sum of the other two numbers.