This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 AIME, 14

Tags: aime 1 , 3b1b , puzzle
Let $ABCD$ be a tetrahedron such that $AB = CD = \sqrt{41}$, $AC = BD = \sqrt{80}$, and $BC = AD = \sqrt{89}$. There exists a point $I$ inside the tetrahedron such that the distances from $I$ to each of the faces of the tetrahedron are all equal. This distance can be written in the form $\frac{m \sqrt{n}}{p}$, when $m$, $n$, and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+p$.