This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2011 Romania National Olympiad, 2

Let $a, b, c $ be distinct positive integers. a) Prove that $a^2b^2 + a^2c^2 + b^2c^2 \ge 9$. b) if, moreover, $ab + ac + bc +3 = abc > 0,$ show that $$(a -1)(b -1)+(a -1)(c -1)+(b -1)(c -1) \ge 6.$$

2008 IMO Shortlist, 1

Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$. [i]Proposed by Angelo Di Pasquale, Australia[/i]

2012 Bosnia And Herzegovina - Regional Olympiad, 4

Prove the inequality: $$\frac{A+a+B+b}{A+a+B+b+c+r}+\frac{B+b+C+c}{B+b+C+c+a+r}>\frac{C+c+A+a}{C+c+A+a+b+r}$$ where $A$, $B$, $C$, $a$, $b$, $c$ and $r$ are positive real numbers

1987 Traian Lălescu, 1.1

Tags: function , algebra
Let $ a\in\mathbb{R}. $ Prove the following proposition: $$ \left( x,y\in\mathbb{R}\implies x^4+y^4+axy+2\ge 0 \right)\iff |a|\le 4. $$

1987 Iran MO (2nd round), 1

Solve the following system of equations in positive integers \[\left\{\begin{array}{cc}a^3-b^3-c^3=3abc\\ \\ a^2=2(b+c)\end{array}\right.\]

2018 ELMO Shortlist, 1

Determine all nonempty finite sets of positive integers $\{a_1, \dots, a_n\}$ such that $a_1 \cdots a_n$ divides $(x + a_1) \cdots (x + a_n)$ for every positive integer $x$. [i]Proposed by Ankan Bhattacharya[/i]

1987 IberoAmerican, 2

Tags: algebra
Let $r,s,t$ be the roots of the equation $x(x-2)(3x-7)=2$. Show that $r,s,t$ are real and positive and determine $\arctan r+\arctan s +\arctan t$.

1999 Korea - Final Round, 1

Tags: function , algebra
If the equation: $f(\frac{x-3}{x+1}) + f(\frac{3+x}{1-x}) = x$ holds true for all real x but $\pm 1$, find $f(x)$.

2022 Germany Team Selection Test, 1

Tags: algebra
Let $n$ be a positive integer. Given is a subset $A$ of $\{0,1,...,5^n\}$ with $4n+2$ elements. Prove that there exist three elements $a<b<c$ from $A$ such that $c+2a>3b$. [i]Proposed by Dominik Burek and Tomasz Ciesla, Poland[/i]

2014 Harvard-MIT Mathematics Tournament, 10

For an integer $n$, let $f_9(n)$ denote the number of positive integers $d\leq 9$ dividing $n$. Suppose that $m$ is a positive integer and $b_1,b_2,\ldots,b_m$ are real numbers such that $f_9(n)=\textstyle\sum_{j=1}^mb_jf_9(n-j)$ for all $n>m$. Find the smallest possible value of $m$.

India EGMO 2025 TST, 9

Tags: algebra
Sunaina and Malay play a game on the coordinate plane. Sunaina has two pawns on $(0,0)$ and $(x,0)$, and Malay has a pawn on $(y,w)$, where $x,y,w$ are all positive integers. They take turns alternately, starting with Sunaina. In their turn they can move one of their pawns one step vertically up or down. Sunaina wins if at any point in time all the three pawns are colinear. Find all values of $x,y$ for which Sunaina has a winning strategy irrespective of the value of $w$. Proposed by NV Tejaswi

2009 Turkey Team Selection Test, 1

For which $ p$ prime numbers, there is an integer root of the polynominal $ 1 \plus{} p \plus{} Q(x^1)\cdot\ Q(x^2)\ldots\ Q(x^{2p \minus{} 2})$ such that $ Q(x)$ is a polynominal with integer coefficients?

2022 Baltic Way, 3

We call a two-variable polynomial $P(x, y)$ [i]secretly one-variable,[/i] if there exist polynomials $Q(x)$ and $R(x, y)$ such that $\deg(Q) \ge 2$ and $P(x, y) = Q(R(x, y))$ (e.g. $x^2 + 1$ and $x^2y^2 +1$ are [i]secretly one-variable[/i], but $xy + 1$ is not). Prove or disprove the following statement: If $P(x, y)$ is a polynomial such that both $P(x, y)$ and $P(x, y) + 1$ can be written as the product of two non-constant polynomials, then $P$ is [i]secretly one-variable[/i]. [i]Note: All polynomials are assumed to have real coefficients. [/i]

2018 Nepal National Olympiad, 2a

Tags: algebra
[b]Problem Section #2 a) If $$ax+by=7$$ $$ax^2+by^2=49$$ $$ax^3+by^3=133$$ $$ax^4+by^4=406$$ , find the value of $2014(x+y-xy)-100(a+b).$

2015 Kyiv Math Festival, P1

Solve equation $\sqrt{1+2x-xy}+\sqrt{1+2y-xy}=2.$

2018 OMMock - Mexico National Olympiad Mock Exam, 3

Find all $n$-tuples of real numbers $(x_1, x_2, \dots, x_n)$ such that, for every index $k$ with $1\leq k\leq n$, the following holds: \[ x_k^2=\sum\limits_{\substack{i < j \\ i, j\neq k}} x_ix_j \] [i]Proposed by Oriol Solé[/i]

2007 Postal Coaching, 3

Let $a$ and $b$ be two positive real numbers such that $a^{2007} = a + 1$ and $b^{4014} = b + 3a$. Determine whether $a > b$ or $b > a$.

2002 Mid-Michigan MO, 5-6

[b]p1.[/b] Find all triples of positive integers such that the sum of their reciprocals is equal to one. [b]p2.[/b] Prove that $a(a + 1)(a + 2)(a + 3)$ is divisible by $24$. [b]p3.[/b] There are $20$ very small red chips and some blue ones. Find out whether it is possible to put them on a large circle such that (a) for each chip positioned on the circle the antipodal position is occupied by a chip of different color; (b) there are no two neighboring blue chips. [b]p4.[/b] A $12$ liter container is filled with gasoline. How to split it in two equal parts using two empty $5$ and $8$ liter containers? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Purple Comet Problems, 12

Tags: algebra
Let $a$ and $b$ be positive real numbers satisfying $$\frac{a}{b} \left( \frac{a}{b}+ 2 \right) + \frac{b}{a} \left( \frac{b}{a}+ 2 \right)= 2022.$$ Find the positive integer $n$ such that $$\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=\sqrt{n}.$$

1995 Taiwan National Olympiad, 4

Let $m_{1},m_{2},...,m_{n}$ be mutually distinct integers. Prove that there exists a $f(x)\in\mathbb{Z}[x]$ of degree $n$ satisfying the following two conditions: a)$f(m_{i})=-1\forall i=1,2,...,n$. b)$f(x)$ is irreducible.

1988 USAMO, 2

The cubic equation $x^3 + ax^2 + bx + c = 0$ has three real roots. Show that $a^2-3b\geq 0$, and that $\sqrt{a^2-3b}$ is less than or equal to the difference between the largest and smallest roots.

2023 ELMO Shortlist, A6

Tags: algebra
Let \(\mathbb R_{>0}\) denote the set of positive real numbers and \(\mathbb R_{\ge0}\) the set of nonnegative real numbers. Find all functions \(f:\mathbb R\times \mathbb R_{>0}\to \mathbb R_{\ge0}\) such that for all real numbers \(a\), \(b\), \(x\), \(y\) with \(x,y>0\), we have \[f(a,x)+f(b,y)=f(a+b,x+y)+f(ay-bx,xy(x+y)).\] [i]Proposed by Luke Robitaille[/i]

Russian TST 2020, P1

Determine all functions $f:\mathbb{R}^+\to\mathbb{R}^+$ satisfying $xf(xf(2y))=y+xyf(x)$ for all $x,y>0$.

2017 South East Mathematical Olympiad, 4

Let $a_1,a_2,\dots,a_{2017}$ be reals satisfied $a_1=a_{2017}$, $|a_i+a_{i+2}-2a_{i+1}|\le 1$ for all $i=1,2,\dots,2015$. Find the maximum value of $\max_{1\le i<j\le 2017}|a_i-a_j|$.

2022 Harvard-MIT Mathematics Tournament, 7

Tags: algebra
Let $(x_1, y_1)$, $(x_2, y_2)$, $(x_3, y_3)$, $(x_4, y_4)$, and $(x_5, y_5)$ be the vertices of a regular pentagon centered at $(0, 0)$. Compute the product of all positive integers k such that the equality $x_1^k+x_2^k+x_3^k+x_4^k+x_5^k=y_1^k+y_2^k+y_3^k+y_4^k+y_5^k$ must hold for all possible choices of the pentagon.