This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1985 Spain Mathematical Olympiad, 5

Find the equation of the circle in the complex plane determined by the roots of the equation $z^3 +(-1+i)z^2+(1-i)z+i= 0$.

2016 China Team Selection Test, 2

Find the smallest positive number $\lambda$, such that for any $12$ points on the plane $P_1,P_2,\ldots,P_{12}$(can overlap), if the distance between any two of them does not exceed $1$, then $\sum_{1\le i<j\le 12} |P_iP_j|^2\le \lambda$.

2017 District Olympiad, 3

On the side $ CD $ of the square $ ABCD, $ consider $ E $ for which $ \angle ABE =60^{\circ } . $ On the line $ AB, $ take the point $ F $ distinct from $ B $ such that $ BE=BF $ and such that it is on the segment $ AB, $ or $ A $ is on $ BF. $ Moreover, $ M $ is the intersection of $ EF,AD. $ [b]a)[/b] Show that $ \angle BME =75^{\circ } . $ [b]b)[/b] If the bisector of $ \angle CBE $ intersects $ CD $ in $ N, $ show that $ BMN $ is equilateral.

2006 Alexandru Myller, 3

$ 5 $ points are situated in the plane so that any three of them form a triangle of area at most $ 1. $ Prove that there is a trapezoid of area at most $ 3 $ which contains all these points ('including' here means that the points can also be on the sides of the trapezoid).

1978 Romania Team Selection Test, 5

Prove that there is no square with its four vertices on four concentric circles whose radii form an arithmetic progression.

2024 Baltic Way, 12

Tags: geometry
Let $ABC$ be an acute triangle with circumcircle $\omega$ such that $AB<AC$. Let $M$ be the midpoint of the arc $BC$ of~$\omega$ containing the point~$A$, and let $X\neq M$ be the other point on $\omega$ such that $AX=AM$. Points $E$ and $F$ are chosen on sides $AC$ and $AB$ of the triangle $ABC$ such that $EX=EC$ and $FX=FB$. Prove that $AE=AF$.

2007 Cono Sur Olympiad, 3

Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$ where $D$, $E$, $F$ lie on $BC$, $AC$, $AB$, respectively. Let $M$ be the midpoint of $BC$. The circumcircle of triangle $AEF$ cuts the line $AM$ at $A$ and $X$. The line $AM$ cuts the line $CF$ at $Y$. Let $Z$ be the point of intersection of $AD$ and $BX$. Show that the lines $YZ$ and $BC$ are parallel.

2020 ASDAN Math Tournament, 6

Triangle $\vartriangle ABC$ has side lengths $AB = 26$, $BC = 34$, and $CA = 24\sqrt2$. A fourth point $D$ makes a right angle $\angle BDC$. What is the smallest possible length of $\overline{AD}$?

2016 Sharygin Geometry Olympiad, 3

A trapezoid $ABCD$ and a line $\ell$ perpendicular to its bases $AD$ and $BC$ are given. A point $X$ moves along $\ell$. The perpendiculars from $A$ to $BX$ and from $D$ to $CX$ meet at point $Y$ . Find the locus of $Y$ . by D.Prokopenko

2013 Bosnia and Herzegovina Junior BMO TST, 3

Let $M$ and $N$ be touching points of incircle with sides $AB$ and $AC$ of triangle $ABC$, and $P$ intersection point of line $MN$ and angle bisector of $\angle ABC$. Prove that $\angle BPC =90 ^{\circ}$

1975 IMO Shortlist, 8

In the plane of a triangle $ABC,$ in its exterior$,$ we draw the triangles $ABR, BCP, CAQ$ so that $\angle PBC = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle QCA = 30^{\circ}$, $\angle ABR = \angle RAB = 15^{\circ}$. Prove that [b]a.)[/b] $\angle QRP = 90\,^{\circ},$ and [b]b.)[/b] $QR = RP.$

2013 Oral Moscow Geometry Olympiad, 2

With a compass and a ruler, split a triangle into two smaller triangles with the same sum of squares of sides.

1978 IMO Longlists, 21

A circle touches the sides $AB,BC, CD,DA$ of a square at points $K,L,M,N$ respectively, and $BU, KV$ are parallel lines such that $U$ is on $DM$ and $V$ on $DN$. Prove that $UV$ touches the circle.

2000 Moldova National Olympiad, Problem 7

In a trapezoid $ABCD$ with $AB\parallel CD$, the diagonals $AC$ and $BD$ meet at $O$. Let $M$ and $N$ be the centers of the regular hexagons constructed on the sides $AB$ and $CD$ in the exterior of the trapezoid. Prove that $M,O$ and $N$ are collinear.

2005 India National Olympiad, 1

Tags: geometry , ratio
Let $M$ be the midpoint of side $BC$ of a triangle $ABC$. Let the median $AM$ intersect the incircle of $ABC$ at $K$ and $L,K$ being nearer to $A$ than $L$. If $AK = KL = LM$, prove that the sides of triangle $ABC$ are in the ratio $5 : 10 : 13$ in some order.

1967 AMC 12/AHSME, 34

Tags: ratio , geometry
Points $D$, $E$, $F$ are taken respectively on sides $AB$, $BC$, and $CA$ of triangle $ABC$ so that $AD:DB=BE:CE=CF:FA=1:n$. The ratio of the area of triangle $DEF$ to that of triangle $ABC$ is: $\textbf{(A)}\ \frac{n^2-n+1}{(n+1)^2}\qquad \textbf{(B)}\ \frac{1}{(n+1)^2}\qquad \textbf{(C)}\ \frac{2n^2}{(n+1)^2}\qquad \textbf{(D)}\ \frac{n^2}{(n+1)^2}\qquad \textbf{(E)}\ \frac{n(n-1)}{n+1}$

2018-2019 SDML (High School), 9

Tags: geometry
Triangle $ABC$ is isosceles with $AB + AC$ and $BC = 65$ cm. $P$ is a point on $\overline{BC}$ such that the perpendicular distances from $P$ to $\overline{AB}$ and $\overline{AC}$ are $24$ cm and $36$ cm, respectively. The area of $\triangle ABC$, in cm$^2$, is $ \mathrm{(A) \ } 1254 \qquad \mathrm{(B) \ } 1640 \qquad \mathrm {(C) \ } 1950 \qquad \mathrm{(D) \ } 2535 \qquad \mathrm{(E) \ } 2942$

2022 Princeton University Math Competition, A5 / B7

Tags: geometry
Let $\vartriangle ABC$ be a triangle with $AB = 5$, $BC = 8$, and, $CA = 7$. Let the center of the $A$-excircle be $O$, and let the $A$-excircle touch lines $BC$, $CA$, and,$ AB$ at points $X, Y$ , and, $Z$, respectively. Let $h_1$, $h_2$, and, $h_3$ denote the distances from $O$ to lines $XY$ , $Y Z$, and, ZX, respectively. If $h^2_1+ h^2_2+ h^2_3$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m, n$, find $m + n$.

1998 AMC 12/AHSME, 16

Tags: ratio , geometry
The figure shown is the union of a circle and two semicircles of diameters of $ a$ and $ b$, all of whose centers are collinear. The ratio of the area of the shaded region to that of the unshaded region is $ \displaystyle \textbf{(A)}\ \sqrt {\frac {a}{b}} \qquad \textbf{(B)}\ \ \frac {a}{b} \qquad \textbf{(C)}\ \ \frac {a^2}{b^2} \qquad \textbf{(D)}\ \ \frac {a \plus{} b}{2b} \qquad \textbf{(E)}\ \ \frac {a^2 \plus{} 2ab}{b^2 \plus{} 2ab}$ [asy]unitsize(2cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); fill(Arc((1/3,0),2/3,0,180)--reverse(Arc((-2/3,0),1/3,180,360))--reverse(Arc((0,0),1,0,180))--cycle,mediumgray); draw(unitcircle); draw(Arc((-2/3,0),1/3,360,180)); draw(Arc((1/3,0),2/3,0,180)); label("$a$",(-2/3,0)); label("$b$",(1/3,0)); draw((-2/3+1/15,0)--(-1/3,0),EndArrow(4)); draw((-2/3-1/15,0)--(-1,0),EndArrow(4)); draw((1/3+1/15,0)--(1,0),EndArrow(4)); draw((1/3-1/15,0)--(-1/3,0),EndArrow(4));[/asy]

2020 Tuymaada Olympiad, 5

Coordinate axes (without any marks, with the same scale) and the graph of a quadratic trinomial $y = x^2 + ax + b$ are drawn in the plane. The numbers $a$ and $b$ are not known. How to draw a unit segment using only ruler and compass?

2000 National Olympiad First Round, 25

Tags: geometry
The area of a convex quadrilateral $ABCD$ is $18$. If $|AB|+|BD|+|DC|=12$, then what is $|AC|$? $ \textbf{(A)}\ 9 \qquad\textbf{(B)}\ 6\sqrt 3 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 6\sqrt 2 $

2003 Romania Team Selection Test, 16

Tags: geometry
Let $ABCDEF$ be a convex hexagon and denote by $A',B',C',D',E',F'$ the middle points of the sides $AB$, $BC$, $CD$, $DE$, $EF$ and $FA$ respectively. Given are the areas of the triangles $ABC'$, $BCD'$, $CDE'$, $DEF'$, $EFA'$ and $FAB'$. Find the area of the hexagon. [i]Kvant Magazine[/i]

2014 Contests, 2 juniors

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be a point on the line $AB$, distinct from $B$, such that $|CG| = |CB|$. Let $H$ be a point on the line $BC$, distinct from $B$, such that $|AB| =|AH|$. Prove that triangle $DGH$ is isosceles. [asy] unitsize(1.5 cm); pair A, B, C, D, G, H; A = (0,0); B = (2,0); D = (0.5,1.5); C = B + D - A; G = reflect(A,B)*(C) + C - B; H = reflect(B,C)*(H) + A - B; draw(H--A--D--C--G); draw(interp(A,G,-0.1)--interp(A,G,1.1)); draw(interp(C,H,-0.1)--interp(C,H,1.1)); draw(D--G--H--cycle, dashed); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, E); dot("$D$", D, NW); dot("$G$", G, NE); dot("$H$", H, SE); [/asy]

2016 Stars of Mathematics, 3

Let $ ABC $ be a triangle, $ M_A $ be the midpoint of the side $ BC, $ and $ P_A $ be the orthogonal projection of $ A $ on $ BC. $ Similarly, define $ M_B,M_C,P_B,P_C. M_BM_C $ intersects $ P_BP_C $ at $ S_A, $ and the tangent of the circumcircle of $ ABC $ at $ A $ meets $ BC $ at $ T_A. $ Similarly, define $ S_B,S_C,T_B,T_C. $ Show that the perpendiculars through $ A,B,C, $ to $ S_AT_A,S_BT_B, $ respectively, $ S_CT_C, $ are concurent. [i]Flavian Georgescu[/i]

1996 Vietnam Team Selection Test, 1

In the plane we are given $3 \cdot n$ points ($n>$1) no three collinear, and the distance between any two of them is $\leq 1$. Prove that we can construct $n$ pairwise disjoint triangles such that: The vertex set of these triangles are exactly the given 3n points and the sum of the area of these triangles $< 1/2$.