Found problems: 15925
2017 CMIMC Algebra, 9
Define a sequence $\{a_{n}\}_{n=1}^{\infty}$ via $a_{1} = 1$ and $a_{n+1} = a_{n} + \lfloor \sqrt{a_{n}} \rfloor$ for all $n \geq 1$. What is the smallest $N$ such that $a_{N} > 2017$?
2007 Stanford Mathematics Tournament, 5
The polynomial $-400x^5+2660x^4-3602x^3+1510x^2+18x-90$ has five rational roots. Suppose you guess a rational number which could possibly be a root (according to the rational root theorem). What is the probability that it actually is a root?
2023/2024 Tournament of Towns, 1
1. Baron Munchhausen was told that some polynomial $P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ is such that $P(x)+P(-x)$ has exactly 45 distinct real roots. Baron doesn't know the value of $n$. Nevertheless he claims that he can determine one of the coefficients $a_{n}, \ldots, a_{1}, a_{0}$ (indicating its position and value). Isn't Baron mistaken?
Boris Frenkin
2023 Taiwan TST Round 2, N
Let $f_n$ be a polynomial with real coefficients for all $n \in \mathbb{Z}$. Suppose that
\[f_n(k) = f_{n+k}(k) \quad n, k \in \mathbb{Z}.\]
(a) Does $f_n = f_m$ necessarily hold for all $m,n \in \mathbb{Z}$?
(b) If furthermore $f_n$ is a polynomial with integer coefficients for all $n \in\mathbb{Z}$, does $f_n = f_m$ necessarily hold for all $m, n \in\mathbb{Z}$?
[i]Proposed by usjl[/i]
2017 Moscow Mathematical Olympiad, 3
Let $x_0$ - is positive root of $x^{2017}-x-1=0$ and $y_0$ - is positive root of $y^{4034}-y=3x_0$
a) Compare $x_0$ and $y_0$
b) Find tenth digit after decimal mark in decimal representation of $|x_0-y_0|$
LMT Accuracy Rounds, 2022 S4
Kevin runs uphill at a speed that is $4$ meters per second slower than his speed when he runs downhill. Kevin takes a total of $80$ seconds to run up and down a hill on one path. Given that the path is $300$ meters long (he travels $600$ meters total), find how long Kevin takes to run up the hill in seconds.
2016 Israel Team Selection Test, 2
Find all $f:\mathbb{R}\rightarrow \mathbb{R}$ satisfying (for all $x,y \in \mathbb{R}$): $f(x+y)^2 - f(2x^2) = f(y-x)f(y+x) + 2x\cdot f(y)$.
2013 Iran Team Selection Test, 16
The function $f:\mathbb Z \to \mathbb Z$ has the property that for all integers $m$ and $n$
\[f(m)+f(n)+f(f(m^2+n^2))=1.\]
We know that integers $a$ and $b$ exist such that $f(a)-f(b)=3$. Prove that integers $c$ and $d$ can be found such that $f(c)-f(d)=1$.
[i]Proposed by Amirhossein Gorzi[/i]
MBMT Guts Rounds, 2018
[hide=C stands for Cantor, G stands for Gauss]they had two problem sets under those two names[/hide]
[u]Set 4[/u]
[b]G.16[/b] A number $k$ is the product of exactly three distinct primes (in other words, it is of the form $pqr$, where $p, q, r$ are distinct primes). If the average of its factors is $66$, find $k$.
[b]G.17[/b] Find the number of lattice points contained on or within the graph of $\frac{x^2}{3} +\frac{y^2}{2}= 12$. Lattice points are coordinate points $(x, y)$ where $x$ and $y$ are integers.
[b]G.18 / C.23[/b] How many triangles can be made from the vertices and center of a regular hexagon? Two congruent triangles with different orientations are considered distinct.
[b]G.19[/b] Cindy has a cone with height $15$ inches and diameter $16$ inches. She paints one-inch thick bands of paint in circles around the cone, alternating between red and blue bands, until the whole cone is covered with paint. If she starts from the bottom of the cone with a blue strip, what is the ratio of the area of the cone covered by red paint to the area of the cone covered by blue paint?
[b]G.20 / C.25[/b] An even positive integer $n$ has an odd factorization if the largest odd divisor of $n$ is also the smallest odd divisor of n greater than 1. Compute the number of even integers $n$ less than $50$ with an odd factorization.
[u] Set 5[/u]
[b]G.21[/b] In the magical tree of numbers, $n$ is directly connected to $2n$ and $2n + 1$ for all nonnegative integers n. A frog on the magical tree of numbers can move from a number $n$ to a number connected to it in $1$ hop. What is the least number of hops that the frog can take to move from $1000$ to $2018$?
[b]G.22[/b] Stan makes a deal with Jeff. Stan is given 1 dollar, and every day for $10$ days he must either double his money or burn a perfect square amount of money. At first Stan thinks he has made an easy $1024$ dollars, but then he learns the catch - after $10$ days, the amount of money he has must be a multiple of $11$ or he loses all his money. What is the largest amount of money Stan can have after the $10$ days are up?
[b]G.23[/b] Let $\Gamma_1$ be a circle with diameter $2$ and center $O_1$ and let $\Gamma_2$ be a congruent circle centered at a point $O_2 \in \Gamma_1$. Suppose $\Gamma_1$ and $\Gamma_2$ intersect at $A$ and $B$. Let $\Omega$ be a circle centered at $A$ passing through $B$. Let $P$ be the intersection of $\Omega$ and $\Gamma_1$ other than $B$ and let $Q$ be the intersection of $\Omega$ and ray $\overrightarrow{AO_1}$. Define $R$ to be the intersection of $PQ$ with $\Gamma_1$. Compute the length of $O_2R$.
[b]G.24[/b] $8$ people are at a party. Each person gives one present to one other person such that everybody gets a present and no two people exchange presents with each other. How many ways is this possible?
[b]G.25[/b] Let $S$ be the set of points $(x, y)$ such that $y = x^3 - 5x$ and $x = y^3 - 5y$. There exist four points in $S$ that are the vertices of a rectangle. Find the area of this rectangle.
PS. You should use hide for answers. C1-15/ G1-10 have been posted [url=https://artofproblemsolving.com/community/c3h2790674p24540132]here [/url] and C16-30/G10-15, G25-30 [url=https://artofproblemsolving.com/community/c3h2790676p24540145]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url]
2006 IMO Shortlist, 6
Determine the least real number $M$ such that the inequality \[|ab(a^{2}-b^{2})+bc(b^{2}-c^{2})+ca(c^{2}-a^{2})| \leq M(a^{2}+b^{2}+c^{2})^{2}\] holds for all real numbers $a$, $b$ and $c$.
2025 Japan MO Finals, 4
Find all integer-coefficient polynomials $f(x)$ satisfying the following conditions for every integer $n \geqslant 2$:
[list]
[*] $f(n) > 0$.
[*] $f(n)$ divides $n^{f(n)} - 1$.
[/list]
2013 Albania Team Selection Test, 3
Solve the function $f: \Re \to \Re$:
\[ f( x^{3} )+ f(y^{3}) = (x+y)(f(x^{2} )+f(y^{2} )-f(xy))\]
2008 Junior Balkan Team Selection Tests - Moldova, 5
Find all natural pairs $ (x,y)$, such that $ x$ and $ y$ are relative prime and satisfy equality: $ 2x^2 \plus{} 5xy \plus{} 3y^2 \equal{} 41x \plus{} 62y \plus{} 21$.
2016 Azerbaijan Junior Mathematical Olympiad, 2
Prove that if for a real number $a $ , $a+\frac {1}{a} $is integer then $a^n+\frac {1}{a^n} $ is also integer where $n$ is positive integer.
Durer Math Competition CD 1st Round - geometry, 2008.D1
Prove the following inequality if we know that $a$ and $b$ are the legs of a right triangle , and $c$ is the length of the hypotenuse of this triangle: $$3a + 4b \le 5c.$$
When does equality holds?
2021 BMT, 1
Let $x$ be a real number such that $x^2 -x+1 = 7$ and $x^2 +x+1 = 13$. Compute the value of $x^4$.
II Soros Olympiad 1995 - 96 (Russia), 10.2
Find the smallest value that the expression can take
$$|a-1|+|b-2|+c-3|+|3a+2b+c|$$
($a$, $b$ and $c$ are arbitrary numbers).
1989 Tournament Of Towns, (223) 1
Three runners, $X, Y$ and $Z$, participated in a race. $Z$ got held up at the start and began running last, while $Y$ was second from the start. During the race $Z$ exchanged positions with other contestants $6$ times, while $X$ did that $5$ times. It is known that $Y$ finished ahead of $X$. In what order did they finish?
1992 IMO Longlists, 57
For positive numbers $a, b, c$ define $A = \frac{(a + b + c)}{3}$, $G = \sqrt[3]{abc}$, $H = \frac{3}{(a^{-1} + b^{-1} + c^{-1})}.$ Prove that
\[ \left( \frac AG \right)^3 \geq \frac 14 + \frac 34 \cdot \frac AH.\]
2018 Thailand TST, 3
An integer $n \geq 3$ is given. We call an $n$-tuple of real numbers $(x_1, x_2, \dots, x_n)$ [i]Shiny[/i] if for each permutation $y_1, y_2, \dots, y_n$ of these numbers, we have
$$\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.$$
Find the largest constant $K = K(n)$ such that
$$\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K$$
holds for every Shiny $n$-tuple $(x_1, x_2, \dots, x_n)$.
1980 IMO Shortlist, 7
The function $f$ is defined on the set $\mathbb{Q}$ of all rational numbers and has values in $\mathbb{Q}$. It satisfies the conditions $f(1) = 2$ and $f(xy) = f(x)f(y) - f(x+y) + 1$ for all $x,y \in \mathbb{Q}$. Determine $f$.
2005 IMO, 3
Let $x,y,z$ be three positive reals such that $xyz\geq 1$. Prove that
\[ \frac { x^5-x^2 }{x^5+y^2+z^2} + \frac {y^5-y^2}{x^2+y^5+z^2} + \frac {z^5-z^2}{x^2+y^2+z^5} \geq 0 . \]
[i]Hojoo Lee, Korea[/i]
2006 Mid-Michigan MO, 7-9
[b]p1.[/b] Find all solutions $a, b, c, d, e, f$ if it is known that they represent distinct digits and satisfy the following:
$\begin{tabular}{ccccc}
& a & b & c & a \\
+ & & d & d & e \\
& & & d & e \\
\hline
d & f & f & d & d \\
\end{tabular}$
[b]p2.[/b] Explain whether it possible that the sum of two squares of positive whole numbers has all digits equal to $1$:
$$n^2 + m^2 = 111...111$$
[b]p3. [/b]Two players play the following game on an $8 \times 8$ chessboard. The first player can put a rook on an arbitrary square. Then the second player can put another rook on a free square that is not controlled by the first rook. Then the first player can put a new rook on a free square that is not controlled by the rooks on the board. Then the second player can do the same, etc. A player who cannot put a new rook on the board loses the game. Who has a winning strategy?
[b]p4.[/b] Show that the difference $9^{2008} - 7^{2008}$ is divisible by $10$.
[b]p5.[/b] Is it possible to find distict positive whole numbers $a, b, c, d, e$ such that
$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}= 1?$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Romanian Master of Mathematics Shortlist, A1
Let $m$ and $n$ be integers greater than $2$, and let $A$ and $B$ be non-constant polynomials with complex coefficients, at least one of which has a degree greater than $1$. Prove that if the degree of the polynomial $A^m-B^n$ is less than $\min(m,n)$, then $A^m=B^n$.
[i]Proposed by Tobi Moektijono, Indonesia[/i]
2020 BMT Fall, 24
For positive integers $N$ and $m$, where $m \le N$, define $$a_{m,N} =\frac{1}{{N+1 \choose m}} \sum_{i=m-1}^{N-1} \frac{ {i \choose m-1}}{N - i}$$ Compute the smallest positive integer $N$ such that $$\sum^N_{m=1}a_{m,N} >\frac{2020N}{N +1}$$