This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Indonesia TST, 1

Let $ f$ be a polynomial with integer coefficients. Assume that there exists integers $ a$ and $ b$ such that $ f(a)\equal{}41$ and $ f(b)\equal{}49$. Prove that there exists an integer $ c$ such that $ 2009$ divides $ f(c)$. [i]Nanang Susyanto, Jogjakarta[/i]

2022 China Girls Math Olympiad, 8

Let $x_1, x_2, \ldots, x_{11}$ be nonnegative reals such that their sum is $1$. For $i = 1,2, \ldots, 11$, let \[ y_i = \begin{cases} x_{i} + x_{i + 1}, & i \, \, \textup{odd} ,\\ x_{i} + x_{i + 1} + x_{i + 2}, & i \, \, \textup{even} ,\end{cases} \] where $x_{12} = x_{1}$. And let $F (x_1, x_2, \ldots, x_{11}) = y_1 y_2 \ldots y_{11}$. Prove that $x_6 < x_8$ when $F$ achieves its maximum.

2012 Tournament of Towns, 3

Consider the points of intersection of the graphs $y = \cos x$ and $x = 100 \cos (100y)$ for which both coordinates are positive. Let $a$ be the sum of their $x$-coordinates and $b$ be the sum of their $y$-coordinates. Determine the value of $\frac{a}{b}$.

1969 IMO Shortlist, 15

$(CZS 4)$ Let $K_1,\cdots , K_n$ be nonnegative integers. Prove that $K_1!K_2!\cdots K_n! \ge \left[\frac{K}{n}\right]!^n$, where $K = K_1 + \cdots + K_n$

2021 Iran Team Selection Test, 5

Call a triple of numbers [b]Nice[/b] if one of them is the average of the other two. Assume that we have $2k+1$ distinct real numbers with $k^2$ [b] Nice[/b] triples. Prove that these numbers can be devided into two arithmetic progressions with equal ratios Proposed by [i]Morteza Saghafian[/i]

2001 Bundeswettbewerb Mathematik, 1

Tags: algebra
On a table there is a pile with $ T$ tokens which incrementally shall be converted into piles with three tokens each. Each step is constituted of selecting one pile removing one of its tokens. And then the remaining pile is separated into two piles. Is there a sequence of steps that can accomplish this process? a.) $ T \equal{} 1000$ (Cono Sur) b.) $ T \equal{} 2001$ (BWM)

2021 Olimphíada, 6

Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f : \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that, for all $m, n \in \mathbb{Z}_{>0 }$: $$f(mf(n)) + f(n) | mn + f(f(n)).$$

2024 Nigerian MO Round 2, Problem 4

Tags: algebra , ap
Let the AP of the form $4$, $9$, $\ldots$ be $\mathbf{A}$, and the AP of the form $16$, $25$, $\ldots$ be $\mathbf{B}$. Find the number of integers from $1$ to $2024$ inclusive, that appear in only one of the AP's. For clarification, the AP's $\mathbf{A}$ and $\mathbf{B}$ start from 4 and 16 respectively. [hide=Answer]584[/hide]

STEMS 2021 Math Cat A, Q1

Let $f(x)=x^{2021}+15x^{2020}+8x+9$ have roots $a_i$ where $i=1,2,\cdots , 2021$. Let $p(x)$ be a polynomial of the sam degree such that $p \left(a_i + \frac{1}{a_i}+1 \right)=0$ for every $1\leq i \leq 2021$. If $\frac{3p(0)}{4p(1)}=\frac{m}{n}$ where $m,n \in \mathbb{Z}$, $n>0$ and $\gcd(m,n)=1$. Then find $m+n$.

2002 China Team Selection Test, 2

Tags: algebra
Let $ \left(a_{n}\right)$ be the sequence of reals defined by $ a_{1}=\frac{1}{4}$ and the recurrence $ a_{n}= \frac{1}{4}(1+a_{n-1})^{2}, n\geq 2$. Find the minimum real $ \lambda$ such that for any non-negative reals $ x_{1},x_{2},\dots,x_{2002}$, it holds \[ \sum_{k=1}^{2002}A_{k}\leq \lambda a_{2002}, \] where $ A_{k}= \frac{x_{k}-k}{(x_{k}+\cdots+x_{2002}+\frac{k(k-1)}{2}+1)^{2}}, k\geq 1$.

2019 India PRMO, 17

Tags: algebra
Let $a,b,c$ be distinct positive integers such that $b+c-a$, $c+a-b$ and $a+b-c$ are all perfect squares. What is the largest possible value of $a+b+c$ smaller than $100$ ?

2010 Postal Coaching, 1

A polynomial $P (x)$ with real coefficients and of degree $n \ge 3$ has $n$ real roots $x_1 <x_2 < \cdots < x_n$ such that \[x_2 - x_1 < x_3 - x_2 < \cdots < x_n - x_{n-1} \] Prove that the maximum value of $|P (x)|$ on the interval $[x_1 , x_n ]$ is attained in the interval $[x_{n-1} , x_n ]$.

2021 Balkan MO, 2

Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $f(x+f(x)+f(y))=2f(x)+y$ for all positive reals $x,y$. [i]Proposed by Athanasios Kontogeorgis, Greece[/i]

2017 Saudi Arabia JBMO TST, 1

Let $a,b,c>0$ and $abc=1$ . Prove that $$ \sqrt{2(1+a^2)(1+b^2)(1+c^2)}\ge 1+a+b+c.$$

I Soros Olympiad 1994-95 (Rus + Ukr), 11.3

For each non-negative $a$, consider the equation $$x^3 + ax - a^3 - 29 = 0.$$ Let $x_o$ be the positive root of this equation. Prove that for all $a > 0$ such a root exists. What is the smallest value of $x_o$?

2021 ITAMO, 4

Tags: function , algebra
Given two fractions $a/b$ and $c/d$ we define their [i]pirate sum[/i] as: $\frac{a}{b} \star \frac{c}{d} = \frac{a+c}{b+d}$ where the two initial fractions are simplified the most possible, like the result. For example, the pirate sum of $2/7$ and $4/5$ is $1/2$. Given an integer $n \ge 3$, initially on a blackboard there are the fractions: $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}$. At each step we choose two fractions written on the blackboard, we delete them and write at their place their pirate sum. Continue doing the same thing until on the blackboard there is only one fraction. Determine, in function of $n$, the maximum and the minimum possible value for the last fraction.

2020 Iran MO (2nd Round), P2

let $x,y,z$ be positive reals , such that $x+y+z=1399$ find the $$\max( [x]y + [y]z + [z]x ) $$ ( $[a]$ is the biggest integer not exceeding $a$)

2002 Bulgaria National Olympiad, 5

Find all pairs $(b,c)$ of positive integers, such that the sequence defined by $a_1=b$, $a_2=c$ and $a_{n+2}= \left| 3a_{n+1}-2a_n \right|$ for $n \geq 1$ has only finite number of composite terms. [i]Proposed by Oleg Mushkarov and Nikolai Nikolov[/i]

2024 Austrian MO National Competition, 5

Let $n$ be a positive integer and let $z_1,z_2,\dots,z_n$ be positive integers such that for $j=1,2,\dots,n$ the inequalites $z_j \le j$ hold and $z_1+z_2+\dots+z_n$ is even. Prove that the number $0$ occurs among the values \[z_1 \pm z_2 \pm \dots \pm z_n,\] where $+$ or $-$ can be chosen independently for each operation. [i](Walther Janous)[/i]

2019 Thailand TSTST, 1

Let $\{x_i\}^{\infty}_{i=1}$ and $\{y_i\}^{\infty}_{i=1}$ be sequences of real numbers such that $x_1=y_1=\sqrt{3}$, $$x_{n+1}=x_n+\sqrt{1+x_n^2}\quad\text{and}\quad y_{n+1}=\frac{y_n}{1+\sqrt{1+y_n^2}}$$ for all $n\geq 1$. Prove that $2<x_ny_n<3$ for all $n>1$.

2021 Saudi Arabia Training Tests, 32

Let $N$ be a positive integer. Consider the sequence $a_1, a_2, ..., a_N$ of positive integers, none of which is a multiple of $2^{N+1}$. For $n \ge N +1$, the number $a_n$ is defined as follows: choose $k$ to be the number among $1, 2, ..., n - 1$ for which the remainder obtained when $a_k$ is divided by $2^n$ is the smallest, and define $a_n = 2a_k$ (if there are more than one such $k$, choose the largest such $k$). Prove that there exist $M$ for which $a_n = a_M$ holds for every $n \ge M$.

1980 IMO Shortlist, 2

Define the numbers $a_0, a_1, \ldots, a_n$ in the following way: \[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \] Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]

1967 AMC 12/AHSME, 16

Let the product $(12)(15)(16)$, each factor written in base $b$, equal $3146$ in base $b$. Let $s=12+15+16$, each term expressed in base $b$. Then $s$, in base $b$, is $\textbf{(A)}\ 43\qquad \textbf{(B)}\ 44\qquad \textbf{(C)}\ 45\qquad \textbf{(D)}\ 46\qquad \textbf{(E)}\ 47$

V Soros Olympiad 1998 - 99 (Russia), 11.7

For what is the smallest natural number $n$ there is a polynomial $P(x)$ with integer coefficients, having $m$ different integer roots, and at the same time the equation $P(x) = n$ has at least one integer solution if: a) $m = 5$, b) $ m = 6$?

2023 Germany Team Selection Test, 3

Let $f(x)$ be a monic polynomial of degree $2023$ with positive integer coefficients. Show that for any sufficiently large integer $N$ and any prime number $p>2023N$, the product \[f(1)f(2)\dots f(N)\] is at most $\binom{2023}{2}$ times divisible by $p$. [i]Proposed by Ashwin Sah[/i]