Found problems: 3349
1975 IMO Shortlist, 8
In the plane of a triangle $ABC,$ in its exterior$,$ we draw the triangles $ABR, BCP, CAQ$ so that $\angle PBC = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle QCA = 30^{\circ}$, $\angle ABR = \angle RAB = 15^{\circ}$.
Prove that
[b]a.)[/b] $\angle QRP = 90\,^{\circ},$ and
[b]b.)[/b] $QR = RP.$
2013 Sharygin Geometry Olympiad, 17
An acute angle between the diagonals of a cyclic quadrilateral is equal to $\phi$. Prove that an acute angle between the diagonals of any other quadrilateral having the same sidelengths is smaller than $\phi$.
1962 Swedish Mathematical Competition, 4
Which of the following statements are true?
(A) $X$ implies $Y$, or $Y$ implies $X$, where $X$ is the statement, the lines $L_1, L_2, L_3$ lie in a plane, and $Y$ is the statement, each pair of the lines $L_1, L_2, L_3$ intersect.
(B) Every sufficiently large integer $n$ satisfies $n = a^4 + b^4$ for some integers a, b.
(C) There are real numbers $a_1, a_2,... , a_n$ such that $a_1 \cos x + a_2 \cos 2x +... + a_n \cos nx > 0$ for all real $x$.
1998 Romania Team Selection Test, 2
A parallelepiped has surface area 216 and volume 216. Show that it is a cube.
2011 Today's Calculation Of Integral, 677
Let $a,\ b$ be positive real numbers with $a<b$. Define the definite integrals $I_1,\ I_2,\ I_3$ by
$I_1=\int_a^b \sin\ (x^2)\ dx,\ I_2=\int_a^b \frac{\cos\ (x^2)}{x^2}\ dx,\ I_3=\int_a^b \frac{\sin\ (x^2)}{x^4}\ dx$.
(1) Find the value of $I_1+\frac 12I_2$ in terms of $a,\ b$.
(2) Find the value of $I_2-\frac 32I_3$ in terms of $a,\ b$.
(3) For a positive integer $n$, define $K_n=\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}} \sin\ (x^2)\ dx+\frac 34\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}}\frac{\sin\ (x^2)}{x^4}\ dx$.
Find the value of $\lim_{n\to\infty} 2n\pi \sqrt{2n\pi} K_n$.
[i]2011 Tokyo University of Science entrance exam/Information Sciences, Applied Chemistry, Mechanical Enginerring, Civil Enginerring[/i]
2001 China Western Mathematical Olympiad, 2
$ ABCD$ is a rectangle of area 2. $ P$ is a point on side $ CD$ and $ Q$ is the point where the incircle of $ \triangle PAB$ touches the side $ AB$. The product $ PA \cdot PB$ varies as $ ABCD$ and $ P$ vary. When $ PA \cdot PB$ attains its minimum value,
a) Prove that $ AB \geq 2BC$,
b) Find the value of $ AQ \cdot BQ$.
2012 Bosnia Herzegovina Team Selection Test, 2
Prove for all positive real numbers $a,b,c$, such that $a^2+b^2+c^2=1$:
\[\frac{a^3}{b^2+c}+\frac{b^3}{c^2+a}+\frac{c^3}{a^2+b}\ge \frac{\sqrt{3}}{1+\sqrt{3}}.\]
2007 Today's Calculation Of Integral, 168
Prove that $\sum_{n=1}^{\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}{\left|\frac{1}{x}\sin \frac{\pi}{x}\right| dx}$ diverge for $x>0.$
2007 Today's Calculation Of Integral, 252
Compare $ \displaystyle f(\theta) \equal{} \int_0^1 (x \plus{} \sin \theta)^2\ dx$ and $ \ g(\theta) \equal{} \int_0^1 (x \plus{} \cos \theta)^2\ dx$ for $ 0\leqq \theta \leqq 2\pi .$
2010 Princeton University Math Competition, 7
Square $ABCD$ is divided into four rectangles by $EF$ and $GH$. $EF$ is parallel to $AB$ and $GH$ parallel to $BC$. $\angle BAF = 18^\circ$. $EF$ and $GH$ meet at point $P$. The area of rectangle $PFCH$ is twice that of rectangle $AGPE$. Given that the value of $\angle FAH$ in degrees is $x$, find the nearest integer to $x$.
[asy]
size(100); defaultpen(linewidth(0.7)+fontsize(10));
pair D2(pair P) {
dot(P,linewidth(3)); return P;
}
// NOTE: I've tampered with the angles to make the diagram not-to-scale. The correct numbers should be 72 instead of 76, and 45 instead of 55.
pair A=(0,1), B=(0,0), C=(1,0), D=(1,1), F=intersectionpoints(A--A+2*dir(-76),B--C)[0], H=intersectionpoints(A--A+2*dir(-76+55),D--C)[0], E=F+(0,1), G=H-(1,0), P=intersectionpoints(E--F,G--H)[0];
draw(A--B--C--D--cycle);
draw(F--A--H); draw(E--F); draw(G--H);
label("$A$",D2(A),NW);
label("$B$",D2(B),SW);
label("$C$",D2(C),SE);
label("$D$",D2(D),NE);
label("$E$",D2(E),plain.N);
label("$F$",D2(F),S);
label("$G$",D2(G),W);
label("$H$",D2(H),plain.E);
label("$P$",D2(P),SE);
[/asy]
2010 Today's Calculation Of Integral, 588
Evaluate $ \int_0^{\frac{\pi}{2}} e^{xe^x}\{(x\plus{}1)e^x(\cos x\plus{}\sin x)\plus{}\cos x\minus{}\sin x\}dx$.
2008 Bulgaria National Olympiad, 1
Let $ ABC$ be an acute triangle and $ CL$ be the angle bisector of $ \angle ACB$. The point $ P$ lies on the segment $CL$ such that $ \angle APB\equal{}\pi\minus{}\frac{_1}{^2}\angle ACB$. Let $ k_1$ and $ k_2$ be the circumcircles of the triangles $ APC$ and $ BPC$. $ BP\cap k_1\equal{}Q, AP\cap k_2\equal{}R$. The tangents to $ k_1$ at $ Q$ and $ k_2$ at $ B$ intersect at $ S$ and the tangents to $ k_1$ at $ A$ and $ k_2$ at $ R$ intersect at $ T$. Prove that $ AS\equal{}BT.$
2002 Moldova National Olympiad, 1
Solve in $ \mathbb R$ the equation $ \sqrt{1\minus{}x}\equal{}2x^2\minus{}1\plus{}2x\sqrt{1\minus{}x^2}$.
2012 National Olympiad First Round, 17
Let $D$ be a point inside $\triangle ABC$ such that $m(\widehat{BAD})=20^{\circ}$, $m(\widehat{DAC})=80^{\circ}$, $m(\widehat{ACD})=20^{\circ}$, and $m(\widehat{DCB})=20^{\circ}$.
$m(\widehat{ABD})= ?$
$ \textbf{(A)}\ 5^{\circ} \qquad \textbf{(B)}\ 10^{\circ} \qquad \textbf{(C)}\ 15^{\circ} \qquad \textbf{(D)}\ 20^{\circ} \qquad \textbf{(E)}\ 25^{\circ}$
1968 Swedish Mathematical Competition, 5
Let $a, b$ be non-zero integers. Let $m(a, b)$ be the smallest value of $\cos ax + \cos bx$ (for real $x$).
Show that for some $r$, $m(a, b) \le r < 0$ for all $a, b$.
2013 India IMO Training Camp, 2
Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.
2010 Morocco TST, 4
Find all triangles whose side lengths are consecutive integers, and one of whose angles is twice another.
2003 Mediterranean Mathematics Olympiad, 2
In a triangle $ABC$ with $BC = CA + \frac 12 AB$, point $P$ is given on side $AB$ such that $BP : PA = 1 : 3$. Prove that $\angle CAP = 2 \angle CPA.$
2007 Iran Team Selection Test, 1
In triangle $ABC$, $M$ is midpoint of $AC$, and $D$ is a point on $BC$ such that $DB=DM$. We know that $2BC^{2}-AC^{2}=AB.AC$. Prove that \[BD.DC=\frac{AC^{2}.AB}{2(AB+AC)}\]
III Soros Olympiad 1996 - 97 (Russia), 11.4
Find the smallest value of a function $$y = \cos 8x + 3\cos 4x +3\cos2x + 2\cos x.$$
2014 Contests, 1
Show that \[\cos(56^{\circ}) \cdot \cos(2 \cdot 56^{\circ}) \cdot \cos(2^2\cdot 56^{\circ})\cdot . . . \cdot \cos(2^{23}\cdot 56^{\circ}) = \frac{1}{2^{24}} .\]
2005 National Olympiad First Round, 29
Let $h_1$ and $h_2$ be the altitudes of a triangle drawn to the sides with length $5$ and $2\sqrt 6$, respectively. If $5+h_1 \leq 2\sqrt 6 + h_2$, what is the third side of the triangle?
$
\textbf{(A)}\ 5
\qquad\textbf{(B)}\ 7
\qquad\textbf{(C)}\ 2\sqrt 6
\qquad\textbf{(D)}\ 3\sqrt 6
\qquad\textbf{(E)}\ 5\sqrt 3
$
2010 Contests, 1
$D, \: E , \: F$ are points on the sides $AB, \: BC, \: CA,$ respectively, of a triangle $ABC$ such that $AD=AF, \: BD=BE,$ and $DE=DF.$ Let $I$ be the incenter of the triangle $ABC,$ and let $K$ be the point of intersection of the line $BI$ and the tangent line through $A$ to the circumcircle of the triangle $ABI.$ Show that $AK=EK$ if $AK=AD.$
2006 South East Mathematical Olympiad, 1
[size=130]In $\triangle ABC$, $\angle A=60^\circ$. $\odot I$ is the incircle of $\triangle ABC$. $\odot I$ is tangent to sides $AB$, $AC$ at $D$, $E$, respectively. Line $DE$ intersects line $BI$ and $CI$ at $F$, $G$ respectively. Prove that [/size]$FG=\frac{BC}{2}$.
2014 AIME Problems, 7
Let $f(x) = (x^2+3x+2)^{\cos(\pi x)}$. Find the sum of all positive integers $n$ for which \[\left| \sum_{k=1}^n \log_{10} f(k) \right| = 1.\]