Found problems: 3349
2005 Kazakhstan National Olympiad, 1
Solve equation
\[2^{\tfrac{1}{2}-2|x|} = \left| {\tan x + \frac{1}{2}} \right| + \left| {\tan x - \frac{1}{2}} \right|\]
2010 Today's Calculation Of Integral, 609
Prove that for positive number $t$, the function $F(t)=\int_0^t \frac{\sin x}{1+x^2}dx$ always takes positive number.
1972 Tokyo University of Education entrance exam
2005 ISI B.Stat Entrance Exam, 4
Find all real solutions of the equation $\sin^{5}x+\cos^{3}x=1$.
2021 Spain Mathematical Olympiad, 1
Vertices $A, B, C$ of a equilateral triangle of side $1$ are in the surface of a sphere with radius $1$ and center $O$. Let $D$ be the orthogonal projection of $A$ on the plane $\alpha$ determined by points $B, C, O$. Let $N$ be one of the intersections of the line perpendicular to $\alpha$ passing through $O$ with the sphere. Find the angle $\angle DNO$.
1988 AIME Problems, 7
In triangle $ABC$, $\tan \angle CAB = 22/7$, and the altitude from $A$ divides $BC$ into segments of length 3 and 17. What is the area of triangle $ABC$?
2004 AMC 12/AHSME, 16
A function $ f$ is defined by $ f(z) \equal{} i\bar z$, where $ i \equal{}\sqrt{\minus{}\!1}$ and $ \bar z$ is the complex conjugate of $ z$. How many values of $ z$ satisfy both $ |z| \equal{} 5$ and $ f (z) \equal{} z$?
$ \textbf{(A)}\ 0 \qquad
\textbf{(B)}\ 1 \qquad
\textbf{(C)}\ 2 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 8$
2011 China Second Round Olympiad, 4
If ${\cos^5 x}-{\sin^5 x}<7({\sin^3 x}-{\cos ^3 x}) $ (for $x\in [ 0,2\pi) $), then find the range of $x$.
PEN S Problems, 37
Let $n$ and $k$ are integers with $n>0$. Prove that \[-\frac{1}{2n}\sum^{n-1}_{m=1}\cot \frac{\pi m}{n}\sin \frac{2\pi km}{n}= \begin{cases}\tfrac{k}{n}-\lfloor\tfrac{k}{n}\rfloor-\frac12 & \text{if }k|n \\ 0 & \text{otherwise}\end{cases}.\]
2012 Today's Calculation Of Integral, 848
Evaluate $\int_0^{\frac {\pi}{4}} \frac {\sin \theta -2\ln \frac{1-\sin \theta}{\cos \theta}}{(1+\cos 2\theta)\sqrt{\ln \frac{1+\sin \theta}{\cos \theta}}}d\theta .$
2012 Kyoto University Entry Examination, 2
Given a regular tetrahedron $OABC$. Take points $P,\ Q,\ R$ on the sides $OA,\ OB,\ OC$ respectively. Note that $P,\ Q,\ R$ are different from the vertices of the tetrahedron $OABC$. If $\triangle{PQR}$ is an equilateral triangle, then prove that three sides $PQ,\ QR,\ RP$ are pararell to three sides $AB,\ BC,\ CA$ respectively.
30 points
1990 APMO, 1
Given triangle $ABC$, let $D$, $E$, $F$ be the midpoints of $BC$, $AC$, $AB$ respectively and let $G$ be the centroid of the triangle. For each value of $\angle BAC$, how many non-similar triangles are there in which $AEGF$ is a cyclic quadrilateral?
2013 Online Math Open Problems, 26
Let $ABC$ be a triangle with $AB=13$, $AC=25$, and $\tan A = \frac{3}{4}$. Denote the reflections of $B,C$ across $\overline{AC},\overline{AB}$ by $D,E$, respectively, and let $O$ be the circumcenter of triangle $ABC$. Let $P$ be a point such that $\triangle DPO\sim\triangle PEO$, and let $X$ and $Y$ be the midpoints of the major and minor arcs $\widehat{BC}$ of the circumcircle of triangle $ABC$. Find $PX \cdot PY$.
[i]Proposed by Michael Kural[/i]
1960 Czech and Slovak Olympiad III A, 1
Determine all real $x$ satisfying $$\frac{1}{\sin^2 x} -\frac{1}{\cos^2x} \ge \frac83.$$
1995 Poland - First Round, 1
Determine all positive integers $n$, such that the equation $2 \sin nx = \tan x + \cot x$ has solutions in real numbers $x$.
1997 IMO Shortlist, 16
In an acute-angled triangle $ ABC,$ let $ AD,BE$ be altitudes and $ AP,BQ$ internal bisectors. Denote by $ I$ and $ O$ the incenter and the circumcentre of the triangle, respectively. Prove that the points $ D, E,$ and $ I$ are collinear if and only if the points $ P, Q,$ and $ O$ are collinear.
2013 Waseda University Entrance Examination, 5
Given a plane $P$ in space. For a figure $A$, call orthogonal projection the whole of points of intersection between the perpendicular drawn from each point in $A$ and $P$. Answer the following questions.
(1) Let a plane $Q$ intersects with the plane $P$ by angle $\theta\ \left(0<\theta <\frac{\pi}{2}\right)$ between the planes, that is to say, the angles between two lines, is $\theta$, which can be generated by cuttng $P,\ Q$ by a plane which is perpendicular to the line of intersection of $P$ and $Q$. Find the maximum and minimum length of the orthogonal projection of the line segment in length 1 on $Q$ on to $P$..
(2) Consider $Q$ in (1). Find the area of the orthogonal projection of a equilateral triangle on $Q$ with side length 1 onto $P$.
(3) What's the shape of the orthogonal projection $T'$ of a regular tetrahedron $T$ with side length 1 on to $P'$, then find the max area of $T'$.
1992 AMC 12/AHSME, 24
Let $ABCD$ be a parallelogram of area $10$ with $AB = 3$ and $BC = 5$. Locate $E$, $F$ and $G$ on segments $\overline{AB}$, $\overline{BC}$ and $\overline{AD}$, respectively, with $AE = BF = AG = 2$. Let the line through $G$ parallel to $\overline{EF}$ intersect $\overline{CD}$ at $H$. The area of the quadrilateral $EFHG$ is
$ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 4.5\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 5.5\qquad\textbf{(E)}\ 6 $
PEN R Problems, 3
Prove no three lattice points in the plane form an equilateral triangle.
2015 USAJMO, 5
Let $ABCD$ be a cyclic quadrilateral. Prove that there exists a point $X$ on segment $\overline{BD}$ such that $\angle BAC=\angle XAD$ and $\angle BCA=\angle XCD$ if and only if there exists a point $Y$ on segment $\overline{AC}$ such that $\angle CBD=\angle YBA$ and $\angle CDB=\angle YDA$.
2006 Purple Comet Problems, 10
An equilateral triangle with side length $6$ has a square of side length $6$ attached to each of its edges as shown. The distance between the two farthest vertices of this figure (marked $A$ and $B$ in the figure) can be written as $m + \sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$.
[asy]
draw((0,0)--(1,0)--(1/2,sqrt(3)/2)--cycle);
draw((1,0)--(1+sqrt(3)/2,1/2)--(1/2+sqrt(3)/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2));
draw((0,0)--(-sqrt(3)/2,1/2)--(-sqrt(3)/2+1/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2));
dot((-sqrt(3)/2+1/2,1/2+sqrt(3)/2));
label("A", (-sqrt(3)/2+1/2,1/2+sqrt(3)/2), N);
draw((1,0)--(1,-1)--(0,-1)--(0,0));
dot((1,-1));
label("B", (1,-1), SE);
[/asy]
2010 Contests, 3
Let $ABC$ be a triangle and let $D\in (BC)$ be the foot of the $A$- altitude. The circle $w$ with the diameter $[AD]$
meet again the lines $AB$ , $AC$ in the points $K\in (AB)$ , $L\in (AC)$ respectively. Denote the meetpoint $M$
of the tangents to the circle $w$ in the points $K$ , $L$ . Prove that the ray $[AM$ is the $A$-median in $\triangle ABC$ ([b][u]Serbia[/u][/b]).
Today's calculation of integrals, 881
Evaluate $\int_{-\pi}^{\pi} \left(\sum_{k=1}^{2013} \sin kx\right)^2dx$.
Kyiv City MO 1984-93 - geometry, 1990.9.4
Let $\alpha, \beta, \gamma$ be the angles of some triangle. Prove that there is a triangle whose sides are equal to $\sin \alpha$, $\sin \beta$, $\sin \gamma$.
2009 Today's Calculation Of Integral, 442
Evaluate $ \int_0^{\frac{\pi}{2}} \frac{\cos \theta \minus{}\sin \theta}{(1\plus{}\cos \theta)(1\plus{}\sin \theta)}\ d\theta$
1997 China Team Selection Test, 1
Given a real number $\lambda > 1$, let $P$ be a point on the arc $BAC$ of the circumcircle of $\bigtriangleup ABC$. Extend $BP$ and $CP$ to $U$ and $V$ respectively such that $BU = \lambda BA$, $CV = \lambda CA$. Then extend $UV$ to $Q$ such that $UQ = \lambda UV$. Find the locus of point $Q$.