This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2019 India IMO Training Camp, P3

Tags: algebra
Let $n\ge 2$ be an integer. Solve in reals: \[|a_1-a_2|=2|a_2-a_3|=3|a_3-a_4|=\cdots=n|a_n-a_1|.\]

2023 IFYM, Sozopol, 4

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that \[ f(2x + y + f(x + y)) + f(xy) = y f(x) \] for all real numbers $x$ and $y$.

2015 Bulgaria National Olympiad, 3

The sequence $a_1, a_2,...$ is de fined by the equalities $a_1 = 2, a_2 = 12$ and $a_{n+1} = 6a_n-a_{n-1}$ for every positive integer $n \ge 2$. Prove that no member of this sequence is equal to a perfect power (greater than one) of a positive integer.

2003 Czech-Polish-Slovak Match, 3

Tags: geometry , algebra
Numbers $p,q,r$ lies in the interval $(\frac{2}{5},\frac{5}{2})$ nad satisfy $pqr=1$. Prove that there exist two triangles of the same area, one with the sides $a,b,c$ and the other with the sides $pa,qb,rc$.

Russian TST 2016, P3

Let $a,b,c$ be positive real numbers such that $a^2+b^2+c^2\geqslant 3$. Prove that \[\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\geqslant\frac{3}{2}.\]

MOAA Accuracy Rounds, 2022

[b]p1.[/b] Find the last digit of $2022^{2022}$. [b]p2.[/b] Let $a_1 < a_2 <... < a_8$ be eight real numbers in an increasing arithmetic progression. If $a_1 + a_3 + a_5 + a_7 = 39$ and $a_2 + a_4 + a_6 + a_8 = 40$, determine the value of $a_1$. [b]p3.[/b] Patrick tries to evaluate the sum of the first $2022$ positive integers, but accidentally omits one of the numbers, $N$, while adding all of them manually, and incorrectly arrives at a multiple of $1000$. If adds correctly otherwise, find the sum of all possible values of $N$. [b]p4.[/b] A machine picks a real number uniformly at random from $[0, 2022]$. Andrew randomly chooses a real number from $[2020, 2022]$. The probability that Andrew’s number is less than the machine’s number is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]p5.[/b] Let $ABCD$ be a square and $P$ be a point inside it such that the distances from $P$ to sides $AB$ and $AD$ respectively are $2$ and $4$, while $PC = 6$. If the side length of the square can be expressed in the form $a +\sqrt{b}$ for positive integers $a, b$, then determine $a + b$. [b]p6.[/b] Positive integers $a_1, a_2, ..., a_{20}$ sum to $57$. Given that $M$ is the minimum possible value of the quantity $a_1!a_2!...a_{20}!$, find the number of positive integer divisors of $M$. [b]p7.[/b] Jessica has $16$ balls in a box, where $15$ of them are red and one is blue. Jessica draws balls out the box three at a time until one of the three is blue. If she ever draws three red marbles, she discards one of them and shuffles the remaining two back into the box. The expected number of draws it takes for Jessica to draw the blue ball can be written as a common fraction $\frac{m}{n}$ where $m, n$ are relatively prime positive integers. Find $m + n$. [b]p8.[/b] The Lucas sequence is defined by these conditions: $L_0 = 2$, $L_1 = 1$, and $L_{n+2} =L_{n+1} +L_n$ for all $n \ge 0$. Determine the remainder when $L^2_{2019} +L^2_{2020}$ is divided by $L_{2023}$. [b]p9.[/b] Let $ABCD$ be a parallelogram. Point $P$ is selected in its interior such that the distance from $P$ to $BC$ is exactly $6$ times the distance from $P$ to $AD$, and $\angle APB = \angle CPD = 90^o$. Given that $AP = 2$ and $CP = 9$, the area of $ABCD$ can be expressed as $m\sqrt{n}$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m + n$. [b]p10.[/b] Consider the polynomial $P(x) = x^{35} + ... + x + 1$. How many pairs $(i, j)$ of integers are there with $0 \le i < j \le 35$ such that if we flip the signs of the $x^i$ and $x^j$ terms in $P(x)$ to form a new polynomial $Q(x)$, then there exists a nonconstant polynomial $R(x)$ with integer coefficients dividing both $P(x)$ and $Q(x)$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1962 All-Soviet Union Olympiad, 12

Given unequal integers $x, y, z$ prove that $(x-y)^5 + (y-z)^5 + (z-x)^5$ is divisible by $5(x-y)(y- z)(z-x)$.

2006 MOP Homework, 3

Tags: algebra
Let $a_{1},a_{2},...,a_{n}$ be positive real numbers with $a_{1}\leq a_{2}\leq ... a_{n}$ such that the arithmetic mean of $a_{1}^{2},...,a_{n}^{2}$ is 1. If the arithmetic mean of $a_{1}, a_{2},...,a_{n}$ is $m$. Prove that if $a_{i}\leq$ m for some $1 \leq i \leq n$, then $n(m-a_{i})^2\leq n-i$

2002 Mediterranean Mathematics Olympiad, 2

Tags: algebra
Suppose $x, y, a$ are real numbers such that $x+y = x^3 +y^3 = x^5 +y^5 = a$. Find all possible values of $a.$

2024 Middle European Mathematical Olympiad, 1

Consider two infinite sequences $a_0,a_1,a_2,\dots$ and $b_0,b_1,b_2,\dots$ of real numbers such that $a_0=0$, $b_0=0$ and \[a_{k+1}=b_k, \quad b_{k+1}=\frac{a_kb_k+a_k+1}{b_k+1}\] for each integer $k \ge 0$. Prove that $a_{2024}+b_{2024} \ge 88$.

2023 Brazil EGMO TST -wrong source, 2

Tags: algebra
Determine all the integers solutions $(x,y)$ of the following equation $$\frac{x^2-4}{2x-1}+\frac{y^2-4}{2y-1}=x+y$$

1982 Czech and Slovak Olympiad III A, 2

Given real numbers $x_1$, $x_2$, $x_3$, $x_4$, $x_5$, $x_6$. Let $M$ denote the maximum of their absolute values. Prove that it is valid $$ | x_1x_4-x_1x_5 +x_2x_5 -x_2x_6+x_3x_6-x_3x_4| \le 4M^2$$

1989 IMO Longlists, 52

Tags: search , algebra , function
Let $ f$ be a function from the real numbers to the real numbers such that $ f(1) \equal{} 1, f(a\plus{}b) \equal{} f(a)\plus{}f(b)$ for all $ a, b,$ and $ f(x)f \left( \frac{1}{x} \right) \equal{} 1$ for all $ x \neq 0.$ Prove that $ f(x) \equal{} x$ for all real numbers $ x.$

2023 India IMO Training Camp, 2

Let $g:\mathbb{N}\to \mathbb{N}$ be a bijective function and suppose that $f:\mathbb{N}\to \mathbb{N}$ is a function such that: [list] [*] For all naturals $x$, $$\underbrace{f(\cdots (f}_{x^{2023}\;f\text{'s}}(x)))=x. $$ [*] For all naturals $x,y$ such that $x|y$, we have $f(x)|g(y)$. [/list] Prove that $f(x)=x$. [i]Proposed by Pulkit Sinha[/i]

2010 Singapore MO Open, 2

Tags: algebra
Let $(a_n), (b_n)$, $n = 1,2,...$ be two sequences of integers defined by $a_1 = 1, b_1 = 0$ and for $n \geq 1$ $a_{n+1} = 7a_n + 12b_n + 6$ $b_{n+1} = 4a_n + 7b_n + 3$ Prove that $a_n^2$ is the difference of two consecutive cubes.

2021 Indonesia TST, A

A positive real $M$ is $strong$ if for any positive reals $a$, $b$, $c$ satisfying $$ \text{max}\left\{ \frac{a}{b+c} , \frac{b}{c+a} , \frac{c}{a+b} \right\} \geqslant M $$ then the following inequality holds: $$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} > 20.$$ (a) Prove that $M=20-\frac{1}{20}$ is not $strong$. (b) Prove that $M=20-\frac{1}{21}$ is $strong$.

2017 Harvard-MIT Mathematics Tournament, 2

Does there exist a two-variable polynomial $P(x, y)$ with real number coefficients such that $P(x, y)$ is positive exactly when $x$ and $y$ are both positive?

2003 Mid-Michigan MO, 7-9

[b]p1[/b]. Is it possible to find $n$ positive numbers such that their sum is equal to $1$ and the sum of their squares is less than $\frac{1}{10}$? [b]p2.[/b] In the country of Sepulia, there are several towns with airports. Each town has a certain number of scheduled, round-trip connecting flights with other towns. Prove that there are two towns that have connecting flights with the same number of towns. [b]p3.[/b] A $4 \times 4$ magic square is a $4 \times 4$ table filled with numbers $1, 2, 3,..., 16$ - with each number appearing exactly once - in such a way that the sum of the numbers in each row, in each column, and in each diagonal is the same. Is it possible to complete $\begin{bmatrix} 2 & 3 & * & * \\ 4 & * & * & *\\ * & * & * & *\\ * & * & * & * \end{bmatrix}$ to a magic square? (That is, can you replace the stars with remaining numbers $1, 5, 6,..., 16$, to obtain a magic square?) [b]p4.[/b] Is it possible to label the edges of a cube with the numbers $1, 2, 3, ... , 12$ in such a way that the sum of the numbers labelling the three edges coming into a vertex is the same for all vertices? [b]p5.[/b] (Bonus) Several ants are crawling along a circle with equal constant velocities (not necessarily in the same direction). If two ants collide, both immediately reverse direction and crawl with the same velocity. Prove that, no matter how many ants and what their initial positions are, they will, at some time, all simultaneously return to the initial positions. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Lithuania Team Selection Test, 5

Tags: algebra
Given real numbers $x$ and $y$. Let $s_{1}=x+y, s_{2}=x^2+y^2, s_{3}=x^3+y^3, s_{4}=x^4+y^4$ and $t=xy$. [b]a)[/b] Prove, that number $t$ is rational, if $s_{2}, s_{3}$ and $s_{4}$ are rational numbers. [b]b)[/b] Prove, that number $s_{1}$ is rational, if $s_{2}, s_{3}$ and $s_{4}$ are rational numbers. [b]c)[/b] Can number $s_{1}$ be irrational, if $s_{2}$ and $s_{3}$ are rational numbers?

2015 Bosnia And Herzegovina - Regional Olympiad, 2

Let $a$, $b$ and $c$ be positive real numbers such that $abc=2015$. Prove that $$\frac{a+b}{a^2+b^2}+\frac{b+c}{b^2+c^2}+\frac{c+a}{c^2+a^2} \leq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{2015}}$$

2010 AMC 12/AHSME, 21

Let $ a>0$, and let $ P(x)$ be a polynomial with integer coefficients such that \[ P(1)\equal{}P(3)\equal{}P(5)\equal{}P(7)\equal{}a\text{, and}\] \[ P(2)\equal{}P(4)\equal{}P(6)\equal{}P(8)\equal{}\minus{}a\text{.}\] What is the smallest possible value of $ a$? $ \textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$

2014 Putnam, 4

Suppose $X$ is a random variable that takes on only nonnegative integer values, with $E[X]=1,$ $E[X^2]=2,$ and $E[X^3]=5.$ (Here $E[Y]$ denotes the expectation of the random variable $Y.$) Determine the smallest possible value of the probability of the event $X=0.$

2013 ELMO Shortlist, 7

Let $p$ be a prime satisfying $p^2\mid 2^{p-1}-1$, and let $n$ be a positive integer. Define \[ f(x) = \frac{(x-1)^{p^n}-(x^{p^n}-1)}{p(x-1)}. \] Find the largest positive integer $N$ such that there exist polynomials $g(x)$, $h(x)$ with integer coefficients and an integer $r$ satisfying $f(x) = (x-r)^N g(x) + p \cdot h(x)$. [i]Proposed by Victor Wang[/i]

1979 All Soviet Union Mathematical Olympiad, 276

Find $x$ and $y$ ($a$ and $b$ parameters): $$\begin{cases} \dfrac{x-y\sqrt{x^2-y^2}}{\sqrt{1-x^2+y^2}} = a\\ \\ \dfrac{y-x\sqrt{x^2-y^2}}{\sqrt{1-x^2+y^2}} = b\end{cases}$$

V Soros Olympiad 1998 - 99 (Russia), 9.3

Solve the system of equations: $$\begin{cases} x + [y] + \{z\}=3.9 \\ y + [z] + \{x\}= 3.5 \\ z + [x] + \{y\}= 2. \end{cases}$$