This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2004 Estonia National Olympiad, 5

The alphabet of language $BAU$ consists of letters $B, A$, and $U$. Independently of the choice of the $BAU$ word of length n from which to start, one can construct all the $BAU$ words with length n using iteratively the following rules: (1) invert the order of the letters in the word; (2) replace two consecutive letters: $BA \to UU, AU \to BB, UB \to AA, UU \to BA, BB \to AU$ or $AA \to UB$. Given that $BBAUABAUUABAUUUABAUUUUABB$ is a $BAU$ word, does $BAU$ have a) the word $BUABUABUABUABAUBAUBAUBAUB$ ? b) the word $ABUABUABUABUAUBAUBAUBAUBA$ ?

2003 Singapore MO Open, 1

A sequence $(a_1,a_2,...,a_{675})$ is given so that each term is an alphabet in the English language (no distinction is made between lower and upper case letters). It is known that in the sequence $a$ is never followed by $b$ and $c$ is never followed by $d$. Show that there are integers $m$ and $n$ with $1 \le m < n \le 674$ such that $a_m = a_n$ and $a_{m+1} = a_{n+1}$·