This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2013 IPhOO, 2

One hundred billion light years from Earth is planet Glorp. The inhabitants of Glorp are intelligent, uniform, amorphous beings with constant density which can modify their shape in any way, and reproduce by splitting. Suppose a Glorpian has somehow formed itself into a spinning cylinder in a frictionless environment. It then splits itself into two Glorpians of equal mass, which proceed to mold themselves into cylinders of the same height, but not the same radius, as the original Glorpian. If the new Glorpians' angular velocities after this are equal and the angular velocity of the original Glorpian is $\omega$, let the angular velocity of the each of the new Glorpians be $\omega'$. Then, find $ \left( \frac {\omega'}{\omega} \right)^{10} $. [i](B. Dejean, 3 points)[/i]