This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 492

2004 China Western Mathematical Olympiad, 1

The sequence $\{a_n\}_{n}$ satisfies the relations $a_1=a_2=1$ and for all positive integers $n$, \[ a_{n+2} = \frac 1{a_{n+1}} + a_n . \] Find $a_{2004}$.

2001 National High School Mathematics League, 13

$(a_n)$ is an arithmetic sequence, $(b_n)$ is a geometric sequence. If $b_1=a_1^2,b_2=a_2^2,b_3=a_3^2(a_1<a_2)$, and $\lim_{n\to\infty}(b_1+b_2+\cdots+b_n)=\sqrt2+1$, find $a_n$.

2014 Dutch IMO TST, 5

Let $P(x)$ be a polynomial of degree $n \le 10$ with integral coefficients such that for every $k \in \{1, 2, \dots, 10\}$ there is an integer $m$ with $P(m) = k$. Furthermore, it is given that $|P(10) - P(0)| < 1000$. Prove that for every integer $k$ there is an integer $m$ such that $P(m) = k.$

2006 Bosnia and Herzegovina Team Selection Test, 4

Prove that every infinite arithmetic progression $a$, $a+d$, $a+2d$,... where $a$ and $d$ are positive integers, contains infinte geometric progression $b$, $bq$, $bq^2$,... where $b$ and $q$ are also positive integers

2016 Dutch IMO TST, 2

For distinct real numbers $a_1,a_2,...,a_n$, we calculate the $\frac{n(n-1)}{2}$ sums $a_i +a_j$ with $1 \le i < j \le n$, and sort them in ascending order. Find all integers $n \ge 3$ for which there exist $a_1,a_2,...,a_n$, for which this sequence of $\frac{n(n-1)}{2}$ sums form an arithmetic progression (i.e. the di erence between consecutive terms is constant).

2000 AMC 10, 23

When the mean, median, and mode of the list $10,2,5,2,4,2,x$ are arranged in increasing order, they form a non-constant arithmetic progression. What is the sum of all possible real values of $x$? $\text{(A)}\ 3\qquad\text{(B)}\ 6 \qquad\text{(C)}\ 9 \qquad\text{(D)}\ 17\qquad\text{(E)}\ 20$

2013 China Team Selection Test, 2

Find the greatest positive integer $m$ with the following property: For every permutation $a_1, a_2, \cdots, a_n,\cdots$ of the set of positive integers, there exists positive integers $i_1<i_2<\cdots <i_m$ such that $a_{i_1}, a_{i_2}, \cdots, a_{i_m}$ is an arithmetic progression with an odd common difference.

2009 USAMTS Problems, 5

The cubic equation $x^3+2x-1=0$ has exactly one real root $r$. Note that $0.4<r<0.5$. (a) Find, with proof, an increasing sequence of positive integers $a_1 < a_2 < a_3 < \cdots$  such that \[\frac{1}{2}=r^{a_1}+r^{a_2}+r^{a_3}+\cdots.\] (b) Prove that the sequence that you found in part (a) is the unique increasing sequence with the above property.

2016 Spain Mathematical Olympiad, 1

Two real number sequences are guiven, one arithmetic $\left(a_n\right)_{n\in \mathbb {N}}$ and another geometric sequence $\left(g_n\right)_{n\in \mathbb {N}}$ none of them constant. Those sequences verifies $a_1=g_1\neq 0$, $a_2=g_2$ and $a_{10}=g_3$. Find with proof that, for every positive integer $p$, there is a positive integer $m$, such that $g_p=a_m$.

1966 AMC 12/AHSME, 18

In a given arithmetic sequence the first term is $2$, the last term is $29$, and the sum of all the terms is $155$. The common difference is: $\text{(A)} \ 3 \qquad \text{(B)} \ 2 \qquad \text{(C)} \ \frac{27}{19} \qquad \text{(D)} \ \frac{13}9 \qquad \text{(E)} \ \frac{23}{38}$

2000 Romania National Olympiad, 1

Let $ \left( x_n\right)_{n\ge 1} $ be a sequence having $ x_1=3 $ and defined as $ x_{n+1} =\left\lfloor \sqrt 2x_n\right\rfloor , $ for every natural number $ n. $ Find all values $ m $ for which the terms $ x_m,x_{m+1},x_{m+2} $ are in arithmetic progression, where $ \lfloor\rfloor $ denotes the integer part.

1991 National High School Mathematics League, 8

In $\triangle ABC$, $A,B,C$ are arithmetic sequence, and $c-a$ is equal to height on side $BC$, then $\sin\frac{C-A}{2}=$________.

the 16th XMO, 3

$m$ is an integer satisfying $m \ge 2024$ , $p$ is the smallest prime factor of $m$ , for an arithmetic sequence $\{a_n\}$ of positive numbers with the common difference $m$ satisfying : for any integer $1 \le i \le \frac{p}{2} $ , there doesn’t exist an integer $x , y \le \max \{a_1 , m\}$ such that $a_i=xy$ Try to proof that there exists a positive real number $c$ such that for any $ 1\le i \le j \le n $ , $gcd(a_i , a_j ) = c \times gcd(i , j)$

2010 Iran Team Selection Test, 1

Let $f:\mathbb N\rightarrow\mathbb N$ be a non-decreasing function and let $n$ be an arbitrary natural number. Suppose that there are prime numbers $p_1,p_2,\dots,p_n$ and natural numbers $s_1,s_2,\dots,s_n$ such that for each $1\leq i\leq n$ the set $\{f(p_ir+s_i)|r=1,2,\dots\}$ is an infinite arithmetic progression. Prove that there is a natural number $a$ such that \[f(a+1), f(a+2), \dots, f(a+n)\] form an arithmetic progression.

2016 Regional Olympiad of Mexico Center Zone, 5

An arithmetic sequence is a sequence of $(a_1, a_2, \dots, a_n) $ such that the difference between any two consecutive terms is the same. That is, $a_ {i + 1} -a_i = d $ for all $i \in \{1,2, \dots, n-1 \} $, where $d$ is the difference of the progression. A sequence $(a_1, a_2, \dots, a_n) $ is [i]tlaxcalteca [/i] if for all $i \in \{1,2, \dots, n-1 \} $, there exists $m_i $ positive integer such that $a_i = \frac {1} {m_i}$. A taxcalteca arithmetic progression $(a_1, a_2, \dots, a_n )$ is said to be [i]maximal [/i] if $(a_1-d, a_1, a_2, \dots, a_n) $ and $(a_1, a_2, \dots, a_n, a_n + d) $ are not Tlaxcalan arithmetic progressions. Is there a maximal tlaxcalteca arithmetic progression of $11$ elements?

1959 AMC 12/AHSME, 33

A harmonic progression is a sequence of numbers such that their reciprocals are in arithmetic progression. Let $S_n$ represent the sum of the first $n$ terms of the harmonic progression; for example $S_3$ represents the sum of the first three terms. If the first three terms of a harmonic progression are $3,4,6$, then: $ \textbf{(A)}\ S_4=20 \qquad\textbf{(B)}\ S_4=25\qquad\textbf{(C)}\ S_5=49\qquad\textbf{(D)}\ S_6=49\qquad\textbf{(E)}\ S_2=\frac12 S_4 $

1978 IMO Longlists, 10

Show that for any natural number $n$ there exist two prime numbers $p$ and $q, p \neq q$, such that $n$ divides their difference.

2003 AMC 10, 1

What is the difference between the sum of the first $ 2003$ even counting numbers and the sum of the first $ 2003$ odd counting numbers? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 2003 \qquad \textbf{(E)}\ 4006$

1997 Argentina National Olympiad, 6

Decide if there are ten natural and distinct numbers $a_1,a_2,\ldots ,a_{10}$ such that: $\bullet$ Each of them is a power of a natural number with a natural exponent and greater than $1$. $\bullet$ The numbers $a_1,a_2,\ldots ,a_{10}$ form an arithmetic progression.

2015 USAJMO, 4

Find all functions $f:\mathbb{Q}\rightarrow\mathbb{Q}$ such that\[f(x)+f(t)=f(y)+f(z)\]for all rational numbers $x<y<z<t$ that form an arithmetic progression. ($\mathbb{Q}$ is the set of all rational numbers.)

2008 ITest, 43

Alexis notices Joshua working with Dr. Lisi and decides to join in on the fun. Dr. Lisi challenges her to compute the sum of all $2008$ terms in the sequence. Alexis thinks about the problem and remembers a story one of her teahcers at school taught her about how a young Karl Gauss quickly computed the sum \[1+2+3+\cdots+98+99+100\] in elementary school. Using Gauss's method, Alexis correctly finds the sum of the $2008$ terms in Dr. Lisi's sequence. What is this sum?

2005 Swedish Mathematical Competition, 4

The zeroes of a fourth degree polynomial $f(x)$ form an arithmetic progression. Prove that the three zeroes of the polynomial $f'(x)$ also form an arithmetic progression.

1978 AMC 12/AHSME, 8

If $x\neq y$ and the sequences $x,a_1,a_2,y$ and $x,b_1,b_2,b_3,y$ each are in arithmetic progression, then $(a_2-a_1)/(b_2-b_1)$ equals $\textbf{(A) }\frac{2}{3}\qquad\textbf{(B) }\frac{3}{4}\qquad\textbf{(C) }1\qquad\textbf{(D) }\frac{4}{3}\qquad \textbf{(E) }\frac{3}{2}$

2019 China Team Selection Test, 2

Fix a positive integer $n\geq 3$. Does there exist infinitely many sets $S$ of positive integers $\lbrace a_1,a_2,\ldots, a_n$, $b_1,b_2,\ldots,b_n\rbrace$, such that $\gcd (a_1,a_2,\ldots, a_n$, $b_1,b_2,\ldots,b_n)=1$, $\lbrace a_i\rbrace _{i=1}^n$, $\lbrace b_i\rbrace _{i=1}^n$ are arithmetic progressions, and $\prod_{i=1}^n a_i = \prod_{i=1}^n b_i$?

1982 AMC 12/AHSME, 8

By definition, $ r! \equal{} r(r \minus{} 1) \cdots 1$ and $ \binom{j}{k} \equal{} \frac {j!}{k!(j \minus{} k)!}$, where $ r,j,k$ are positive integers and $ k < j$. If $ \binom{n}{1}, \binom{n}{2}, \binom{n}{3}$ form an arithmetic progression with $ n > 3$, then $ n$ equals $ \textbf{(A)}\ 5\qquad \textbf{(B)}\ 7\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 11\qquad \textbf{(E)}\ 12$