This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2005 Balkan MO, 2

Find all primes $p$ such that $p^2-p+1$ is a perfect cube.

2007 Today's Calculation Of Integral, 186

For $a>0,$ find $\lim_{a\to\infty}a^{-\left(\frac{3}{2}+n\right) }\int_{0}^{a}x^{n}\sqrt{1+x}\ dx\ (n=1,\ 2,\ \cdots).$

2009 Today's Calculation Of Integral, 417

The functions $ f(x) ,\ g(x)$ satify that $ f(x) \equal{} \frac {x^3}{2} \plus{} 1 \minus{} x\int_0^x g(t)\ dt,\ g(x) \equal{} x \minus{} \int_0^1 f(t)\ dt$. Let $ l_1,\ l_2$ be the tangent lines of the curve $ y \equal{} f(x)$, which pass through the point $ (a,\ g(a))$ on the curve $ y \equal{} g(x)$. Find the minimum area of the figure bounded by the tangent tlines $ l_1,\ l_2$ and the curve $ y \equal{} f(x)$ .

2014 BMT Spring, 20

A certain type of Bessel function has the form $I(x) = \frac{1}{\pi} \int_0^{\pi}e^{x \cos \theta} d\theta$ for all real $x$. Evaluate $\int_0^{\infty} x I(2x) e^{-x^2}dx$.

2011 Today's Calculation Of Integral, 677

Let $a,\ b$ be positive real numbers with $a<b$. Define the definite integrals $I_1,\ I_2,\ I_3$ by $I_1=\int_a^b \sin\ (x^2)\ dx,\ I_2=\int_a^b \frac{\cos\ (x^2)}{x^2}\ dx,\ I_3=\int_a^b \frac{\sin\ (x^2)}{x^4}\ dx$. (1) Find the value of $I_1+\frac 12I_2$ in terms of $a,\ b$. (2) Find the value of $I_2-\frac 32I_3$ in terms of $a,\ b$. (3) For a positive integer $n$, define $K_n=\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}} \sin\ (x^2)\ dx+\frac 34\int_{\sqrt{2n\pi}}^{\sqrt{2(n+1)\pi}}\frac{\sin\ (x^2)}{x^4}\ dx$. Find the value of $\lim_{n\to\infty} 2n\pi \sqrt{2n\pi} K_n$. [i]2011 Tokyo University of Science entrance exam/Information Sciences, Applied Chemistry, Mechanical Enginerring, Civil Enginerring[/i]

1997 Putnam, 3

Evaluate the following : \[ \int_{0}^{\infty}\left(x-\frac{x^3}{2}+\frac{x^5}{2\cdot 4}-\frac{x^7}{2\cdot 4\cdot 6}+\cdots \right)\;\left(1+\frac{x^2}{2^2}+\frac{x^4}{2^2\cdot 4^2}+\frac{x^6}{2^2\cdot 4^2\cdot 6^2}+\cdots \right)\,\mathrm{d}x \]

2007 Today's Calculation Of Integral, 168

Prove that $\sum_{n=1}^{\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}{\left|\frac{1}{x}\sin \frac{\pi}{x}\right| dx}$ diverge for $x>0.$

2007 Today's Calculation Of Integral, 252

Compare $ \displaystyle f(\theta) \equal{} \int_0^1 (x \plus{} \sin \theta)^2\ dx$ and $ \ g(\theta) \equal{} \int_0^1 (x \plus{} \cos \theta)^2\ dx$ for $ 0\leqq \theta \leqq 2\pi .$

2012 Today's Calculation Of Integral, 808

For a constant $c$, a sequence $a_n$ is defined by $a_n=\int_c^1 nx^{n-1}\left(\ln \left(\frac{1}{x}\right)\right)^n dx\ (n=1,\ 2,\ 3,\ \cdots).$ Find $\lim_{n\to\infty} a_n$.

PEN Q Problems, 9

For non-negative integers $n$ and $k$, let $P_{n, k}(x)$ denote the rational function \[\frac{(x^{n}-1)(x^{n}-x) \cdots (x^{n}-x^{k-1})}{(x^{k}-1)(x^{k}-x) \cdots (x^{k}-x^{k-1})}.\] Show that $P_{n, k}(x)$ is actually a polynomial for all $n, k \in \mathbb{N}$.

2010 Today's Calculation Of Integral, 588

Evaluate $ \int_0^{\frac{\pi}{2}} e^{xe^x}\{(x\plus{}1)e^x(\cos x\plus{}\sin x)\plus{}\cos x\minus{}\sin x\}dx$.

2003 Mediterranean Mathematics Olympiad, 2

In a triangle $ABC$ with $BC = CA + \frac 12 AB$, point $P$ is given on side $AB$ such that $BP : PA = 1 : 3$. Prove that $\angle CAP = 2 \angle CPA.$

2023 CIIM, 1

Determine all the pairs of positive real numbers $(a, b)$ with $a < b$ such that the following series $$\sum_{k=1}^{\infty} \int_a^b\{x\}^k dx =\int_a^b\{x\} dx + \int_a^b\{x\}^2 dx + \int_a^b\{x\}^3 dx + \cdots$$ is convergent and determine its value in function of $a$ and $b$. [b]Note: [/b] $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of $x$.

ICMC 4, 3

Let $\displaystyle s_n=\int_0^1 \text{sin}^n(nx) \,dx$. (a) Prove that $s_n \leq \dfrac 2n$ for all odd $n$. (b) Find all the limit points of the sequence $s_1, s_2, s_3, \dots$. [i]Proposed by Cristi Calin[/i]

2009 VTRMC, Problem 7

Does there exist a twice differentiable function $f:\mathbb R\to\mathbb R$ such that $f'(x)=f(x+1)-f(x)$ for all $x$ and $f''(0)\ne0$? Justify your answer.

Today's calculation of integrals, 886

Find the functions $f(x),\ g(x)$ such that $f(x)=e^{x}\sin x+\int_0^{\pi} ug(u)\ du$ $g(x)=e^{x}\cos x+\int_0^{\pi} uf(u)\ du$

2013 Today's Calculation Of Integral, 878

A cubic function $f(x)$ satisfies the equation $\sin 3t=f(\sin t)$ for all real numbers $t$. Evaluate $\int_0^1 f(x)^2\sqrt{1-x^2}\ dx$.

2006 Czech-Polish-Slovak Match, 5

Find the number of sequences $(a_n)_{n=1}^\infty$ of integers satisfying $a_n \ne -1$ and \[a_{n+2} =\frac{a_n + 2006}{a_{n+1} + 1}\] for each $n \in \mathbb{N}$.

2009 Today's Calculation Of Integral, 418

(1) 2009 Kansai University entrance exam Calculate $ \int \frac{e^{\minus{}2x}}{1\plus{}e^{\minus{}x}}\ dx$. (2) 2009 Rikkyo University entrance exam/Science Evaluate $ \int_0^ 1 \frac{2x^3}{1\plus{}x^2}\ dx$.

2009 Iran Team Selection Test, 3

Suppose that $ a$,$ b$,$ c$ be three positive real numbers such that $ a\plus{}b\plus{}c\equal{}3$ . Prove that : $ \frac{1}{2\plus{}a^{2}\plus{}b^{2}}\plus{}\frac{1}{2\plus{}b^{2}\plus{}c^{2}}\plus{}\frac{1}{2\plus{}c^{2}\plus{}a^{2}} \leq \frac{3}{4}$

2008 Moldova National Olympiad, 12.6

Find $ \lim_{n\to\infty}a_n$ where $ (a_n)_{n\ge1}$ is defined by $ a_n\equal{}\frac1{\sqrt{n^2\plus{}8n\minus{}1}}\plus{}\frac1{\sqrt{n^2\plus{}16n\minus{}1}}\plus{}\frac1{\sqrt{n^2\plus{}24n\minus{}1}}\plus{}\ldots\plus{}\frac1{\sqrt{9n^2\minus{}1}}$.

2010 Today's Calculation Of Integral, 572

For integer $ n,\ a_n$ is difined by $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\cos x)^ndx$. (1) Find $ a_{\minus{}2},\ a_{\minus{}1}$. (2) Find the relation of $ a_n$ and $ a_{n\minus{}2}$. (3) Prove that $ a_{2n}\equal{}b_n\plus{}\pi c_n$ for some rational number $ b_n,\ c_n$, then find $ c_n$ for $ n<0$.

2007 China Team Selection Test, 3

Consider a $ 7\times 7$ numbers table $ a_{ij} \equal{} (i^2 \plus{} j)(i \plus{} j^2), 1\le i,j\le 7.$ When we add arbitrarily each term of an arithmetical progression consisting of $ 7$ integers to corresponding to term of certain row (or column) in turn, call it an operation. Determine whether such that each row of numbers table is an arithmetical progression, after a finite number of operations.

1981 Canada National Olympiad, 2

Given a circle of radius $r$ and a tangent line $\ell$ to the circle through a given point $P$ on the circle. From a variable point $R$ on the circle, a perpendicular $RQ$ is drawn to $\ell$ with $Q$ on $\ell$. Determine the maximum of the area of triangle $PQR$.

2010 Contests, 3

[b](a)[/b]Prove that every pentagon with integral coordinates has at least two vertices , whose respective coordinates have the same parity. [b](b)[/b]What is the smallest area possible of pentagons with integral coordinates. Albanian National Mathematical Olympiad 2010---12 GRADE Question 3.