This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2021 JHMT HS, 4

There is a unique differentiable function $f$ from $\mathbb{R}$ to $\mathbb{R}$ satisfying $f(x) + (f(x))^3 = x + x^7$ for all real $x.$ The derivative of $f(x)$ at $x = 2$ can be expressed as a common fraction $a/b.$ Compute $a + b.$

2003 AMC 12-AHSME, 25

Let $ f(x)\equal{}\sqrt{ax^2\plus{}bx}$. For how many real values of $ a$ is there at least one positive value of $ b$ for which the domain of $ f$ and the range of $ f$ are the same set? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \text{infinitely many}$

2010 Today's Calculation Of Integral, 609

Prove that for positive number $t$, the function $F(t)=\int_0^t \frac{\sin x}{1+x^2}dx$ always takes positive number. 1972 Tokyo University of Education entrance exam

1969 AMC 12/AHSME, 19

The number of distinct ordered pairs $(x,y)$, where $x$ and $y$ have positive integral values satisfying the equation $x^4y^4-10x^2y^2+9=0$, is: $\textbf{(A) }0\qquad \textbf{(B) }3\qquad \textbf{(C) }4\qquad \textbf{(D) }12\qquad \textbf{(E) }\text{infinite}$

2020 Jozsef Wildt International Math Competition, W2

Let $\left(a_n\right)_{n\geq1}$ be a sequence of nonnegative real numbers which converges to $a \in \mathbb{R}$. [list=1] [*]Calculate$$\lim \limits_{n\to \infty}\sqrt[n]{\int \limits_0^1 \left(1+a_nx^n \right)^ndx}$$ [*]Calculate$$\lim \limits_{n\to \infty}\sqrt[n]{\int \limits_0^1 \left(1+\frac{a_1x+a_3x^3+\cdots+a_{2n-1}x^{2n-1}}{n} \right)^ndx}$$ [/list]

2012 Today's Calculation Of Integral, 848

Evaluate $\int_0^{\frac {\pi}{4}} \frac {\sin \theta -2\ln \frac{1-\sin \theta}{\cos \theta}}{(1+\cos 2\theta)\sqrt{\ln \frac{1+\sin \theta}{\cos \theta}}}d\theta .$

1985 IMO Longlists, 78

The sequence $f_1, f_2, \cdots, f_n, \cdots $ of functions is defined for $x > 0$ recursively by \[f_1(x)=x , \quad f_{n+1}(x) = f_n(x) \left(f_n(x) + \frac 1n \right)\] Prove that there exists one and only one positive number $a$ such that $0 < f_n(a) < f_{n+1}(a) < 1$ for all integers $n \geq 1.$

2020 IMC, 5

Find all twice continuously differentiable functions $f: \mathbb{R} \to (0, \infty)$ satisfying $f''(x)f(x) \ge 2f'(x)^2.$

1986 Traian Lălescu, 2.1

Let be a nonnegative integer $ n. $ Find all continuous functions $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R} $ for which the following equation holds: $$ (1+n)\int_0^x f(t) dt =nxf(x) ,\quad\forall x>0. $$

2009 Putnam, A6

Let $ f: [0,1]^2\to\mathbb{R}$ be a continuous function on the closed unit square such that $ \frac{\partial f}{\partial x}$ and $ \frac{\partial f}{\partial y}$ exist and are continuous on the interior of $ (0,1)^2.$ Let $ a\equal{}\int_0^1f(0,y)\,dy,\ b\equal{}\int_0^1f(1,y)\,dy,\ c\equal{}\int_0^1f(x,0)\,dx$ and $ d\equal{}\int_0^1f(x,1)\,dx.$ Prove or disprove: There must be a point $ (x_0,y_0)$ in $ (0,1)^2$ such that $ \frac{\partial f}{\partial x}(x_0,y_0)\equal{}b\minus{}a$ and $ \frac{\partial f}{\partial y}(x_0,y_0)\equal{}d\minus{}c.$

2012 Today's Calculation Of Integral, 839

Evaluate $\int_{\frac 12}^1 \sqrt{1-x^2}\ dx.$

2009 German National Olympiad, 6

Let a sequences: $ x_0\in [0;1],x_{n\plus{}1}\equal{}\frac56\minus{}\frac43 \Big|x_n\minus{}\frac12\Big|$. Find the "best" $ |a;b|$ so that for all $ x_0$ we have $ x_{2009}\in [a;b]$

2024 CMIMC Integration Bee, 13

\[\int_0^{2\pi} \frac{1}{3+2 \sqrt{3} \cos x + \cos^2 x}\mathrm dx\] [i]Proposed by Robert Trosten[/i]

Today's calculation of integrals, 881

Evaluate $\int_{-\pi}^{\pi} \left(\sum_{k=1}^{2013} \sin kx\right)^2dx$.

2007 Putnam, 5

Let $ k$ be a positive integer. Prove that there exist polynomials $ P_0(n),P_1(n),\dots,P_{k\minus{}1}(n)$ (which may depend on $ k$) such that for any integer $ n,$ \[ \left\lfloor\frac{n}{k}\right\rfloor^k\equal{}P_0(n)\plus{}P_1(n)\left\lfloor\frac{n}{k}\right\rfloor\plus{} \cdots\plus{}P_{k\minus{}1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k\minus{}1}.\] ($ \lfloor a\rfloor$ means the largest integer $ \le a.$)

2009 Today's Calculation Of Integral, 442

Evaluate $ \int_0^{\frac{\pi}{2}} \frac{\cos \theta \minus{}\sin \theta}{(1\plus{}\cos \theta)(1\plus{}\sin \theta)}\ d\theta$

2015 Kyoto University Entry Examination, 5

5. Let $a,b,c,d,e$ be positive rational numbers. Consider integral expressions $f(x)=ax^2+bx+c$ $g(x)=dx+e$ Put $\frac{f(n)}{g(n)}$ an integer for all positive integers $n$. Then, show that $f(x)$ is dividible by $g(x)$.

2013 Kosovo National Mathematical Olympiad, 2

Find all integer $n$ such that $n-5$ divide $n^2+n-27$.

2011 Baltic Way, 4

Let $a,b,c,d$ be non-negative reals such that $a+b+c+d=4$. Prove the inequality \[\frac{a}{a^3+8}+\frac{b}{b^3+8}+\frac{c}{c^3+8}+\frac{d}{d^3+8}\le\frac{4}{9}\]

2011 Today's Calculation Of Integral, 688

For a real number $x$, let $f(x)=\int_0^{\frac{\pi}{2}} |\cos t-x\sin 2t|\ dt$. (1) Find the minimum value of $f(x)$. (2) Evaluate $\int_0^1 f(x)\ dx$. [i]2011 Tokyo Institute of Technology entrance exam, Problem 2[/i]

2021 CMIMC Integration Bee, 9

$$\int_1^2\frac{12x^3+12x+12}{2x^4+3x^2+4x}\,dx$$ [i]Proposed by Connor Gordon[/i]

2007 Today's Calculation Of Integral, 193

For $a>0$, let $l$ be the line created by rotating the tangent line to parabola $y=x^{2}$, which is tangent at point $A(a,a^{2})$, around $A$ by $-\frac{\pi}{6}$. Let $B$ be the other intersection of $l$ and $y=x^{2}$. Also, let $C$ be $(a,0)$ and let $O$ be the origin. (1) Find the equation of $l$. (2) Let $S(a)$ be the area of the region bounded by $OC$, $CA$ and $y=x^{2}$. Let $T(a)$ be the area of the region bounded by $AB$ and $y=x^{2}$. Find $\lim_{a \to \infty}\frac{T(a)}{S(a)}$.

2022 JHMT HS, 6

Tags: calculus
There is a unique choice of positive integers $a$, $b$, and $c$ such that $c$ is not divisible by the square of any prime and the infinite sums \[ \sum_{n=0}^{\infty} \left(\left(\frac{a - b\sqrt{c}}{10}\right)^{n-10}\cdot\prod_{k=0}^{9} (n - k)\right) \quad \text{and} \quad \sum_{n=0}^{\infty} \left((a - b\sqrt{c})^{n+1}\cdot\prod_{k=0}^{9} (n - k)\right) \] are equal (i.e., converging to the same finite value). Compute $a + b + c$.

PEN Q Problems, 9

For non-negative integers $n$ and $k$, let $P_{n, k}(x)$ denote the rational function \[\frac{(x^{n}-1)(x^{n}-x) \cdots (x^{n}-x^{k-1})}{(x^{k}-1)(x^{k}-x) \cdots (x^{k}-x^{k-1})}.\] Show that $P_{n, k}(x)$ is actually a polynomial for all $n, k \in \mathbb{N}$.

2011 Morocco National Olympiad, 1

Find the maximum value of the real constant $C$ such that $x^{2}+y^{2}+1\geq C(x+y)$, and $ x^{2}+y^{2}+xy+1\geq C(x+y)$ for all reals $x,y$.