This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 492

1998 Brazil Team Selection Test, Problem 2

Suppose that $S$ is a finite set of real numbers with the property that any two distinct elements of $S$ form an arithmetic progression with another element in $S$. Give an example of such a set with 5 elements and show that no such set exists with more than $5$ elements.

2022 IOQM India, 3

Consider the set $\mathcal{T}$ of all triangles whose sides are distinct prime numbers which are also in arithmetic progression. Let $\triangle \in \mathcal{T}$ be the triangle with least perimeter. If $a^{\circ}$ is the largest angle of $\triangle$ and $L$ is its perimeter, determine the value of $\frac{a}{L}$.

2006 AMC 12/AHSME, 8

How many sets of two or more consecutive positive integers have a sum of 15? $ \textbf{(A) } 1\qquad \textbf{(B) } 2\qquad \textbf{(C) } 3\qquad \textbf{(D) } 4\qquad \textbf{(E) } 5$

2003 AMC 12-AHSME, 1

What is the difference between the sum of the first $ 2003$ even counting numbers and the sum of the first $ 2003$ odd counting numbers? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 2003 \qquad \textbf{(E)}\ 4006$

2021 Iran Team Selection Test, 5

Call a triple of numbers [b]Nice[/b] if one of them is the average of the other two. Assume that we have $2k+1$ distinct real numbers with $k^2$ [b] Nice[/b] triples. Prove that these numbers can be devided into two arithmetic progressions with equal ratios Proposed by [i]Morteza Saghafian[/i]

2010 N.N. Mihăileanu Individual, 3

Consider a countinuous function $ f:\mathbb{R}_{>0}\longrightarrow\mathbb{R}_{>0} $ that verifies the following conditions: $ \text{(1)} x f(f(x))=(f(x))^2,\quad\forall x\in\mathbb{R}_{>0} $ $ \text{(2)} \lim_{\stackrel{x\to 0}{x>0}} \frac{f(x)}{x}\in\mathbb{R}\cup\{ \pm\infty \} $ [b]a)[/b] Show that $ f $ is bijective. [b]b)[/b] Prove that the sequences $ \left( (\underbrace{f\circ f\circ\cdots \circ f}_{\text{n times}} ) (x) \right)_{n\ge 1} ,\left( (\underbrace{f^{-1}\circ f^{-1}\circ\cdots \circ f^{-1}}_{\text{n times}} ) (x) \right)_{n\ge 1} $ are both arithmetic progressions, for any fixed $ x\in\mathbb{R}_{>0} . $ [b]c)[/b] Determine the function $ f. $ [i]Nelu Chichirim[/i]

PEN G Problems, 18

Show that the cube roots of three distinct primes cannot be terms in an arithmetic progression.

2004 Argentina National Olympiad, 6

Decide if it is possible to generate an infinite sequence of positive integers $a_n$ such that in the sequence there are no three terms that are in arithmetic progression and that for all $n$ $\left |a_n-n^2\right | <\frac{n}{2}$. Clarification: Three numbers $a$, $b$, $c$ are in arithmetic progression if and only if $2b=a+c$.

1962 AMC 12/AHSME, 3

The first three terms of an arithmetic progression are $ x \minus{} 1, x \plus{} 1, 2x \plus{} 3,$ in the order shown. The value of $ x$ is: $ \textbf{(A)}\ \minus{} 2 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ \text{undetermined}$

2004 Nordic, 2

Show that there exist strictly increasing infinite arithmetic sequence of integers which has no numbers in common with the Fibonacci sequence.

1981 Yugoslav Team Selection Test, Problem 1

Let $n\ge3$ be a natural number. For a set $S$ of $n$ real numbers, $A(S)$ denotes the set of all strictly increasing arithmetic sequences of three terms in $S$. At most, how many elements can the set $A(S)$ have?

2005 USAMTS Problems, 1

An increasing arithmetic sequence with infinitely many terms is determined as follows. A single die is thrown and the number that appears is taken as the first term. The die is thrown again and the second number that appears is taken as the common difference between each pair of consecutive terms. Determine with proof how many of the 36 possible sequences formed in this way contain at least one perfect square.

2019 India PRMO, 20

Consider the set $E$ of all natural numbers $n$ such that whenn divided by $11, 12, 13$, respectively, the remainders, int that order, are distinct prime numbers in an arithmetic progression. If $N$ is the largest number in $E$, find the sum of digits of $N$.

2017 Saudi Arabia Pre-TST + Training Tests, 4

Does there exist an integer $n \ge 3$ and an arithmetic sequence $a_0, a_1, ... , a_n$ such that the polynomial $a_nx^n +... + a_1x + a_0$ has $n$ roots which also form an arithmetic sequence?

2019 IMO Shortlist, A7

Let $\mathbb Z$ be the set of integers. We consider functions $f :\mathbb Z\to\mathbb Z$ satisfying \[f\left(f(x+y)+y\right)=f\left(f(x)+y\right)\] for all integers $x$ and $y$. For such a function, we say that an integer $v$ is [i]f-rare[/i] if the set \[X_v=\{x\in\mathbb Z:f(x)=v\}\] is finite and nonempty. (a) Prove that there exists such a function $f$ for which there is an $f$-rare integer. (b) Prove that no such function $f$ can have more than one $f$-rare integer. [i]Netherlands[/i]

2021 China Second Round Olympiad, Problem 11

The function $f(x) = x^2+ax+b$ has two distinct zeros. If $f(x^2+2x-1)=0$ has four distinct zeros $x_1<x_2<x_3<x_4$ that form an arithmetic sequence, compute the range of $a-b$. [i](Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 11)[/i]

2020 Peru EGMO TST, 4

The function $f:\mathbb{N}\rightarrow \mathbb{N}$ is [b]peruvian[/b] if it satifies the following two properties: $\triangleright f$ is strictly increasing. $\triangleright$ The numbers $a_1,a_2,a_3,\dots$ where $a_1=f(1)$ and $a_{n+1}=f(a_n)$ for every $n\geq 1$, are in arithmetic progression. Determine all peruvian functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that $f(1)=3$.

2015 Estonia Team Selection Test, 1

Let $n$ be a natural number, $n \ge 5$, and $a_1, a_2, . . . , a_n$ real numbers such that all possible sums $a_i + a_j$, where $1 \le i < j \le n$, form $\frac{n(n-1)}{2}$ consecutive members of an arithmetic progression when taken in some order. Prove that $a_1 = a_2 = . . . = a_n$.

2000 Baltic Way, 13

Let $a_1,a_2 ,\ldots, a_n$ be an arithmetic progression of integers such that $i|a_i$ for $i=1, 2,\ldots ,n-1$ and $n\nmid a_n$. Prove that $n$ is a prime power.

2016 Philippine MO, 2

Prove that the arithmetic sequence $5, 11, 17, 23, 29, \ldots$ contains infinitely many primes.

2000 IberoAmerican, 1

From an infinite arithmetic progression $ 1,a_1,a_2,\dots$ of real numbers some terms are deleted, obtaining an infinite geometric progression $ 1,b_1,b_2,\dots$ whose ratio is $ q$. Find all the possible values of $ q$.

2003 Iran MO (3rd Round), 8

A positive integer $n$ is said to be a [i]perfect power[/i] if $n=a^b$ for some integers $a,b$ with $b>1$. $(\text{a})$ Find $2004$ perfect powers in arithmetic progression. $(\text{b})$ Prove that perfect powers cannot form an infinite arithmetic progression.

2016 India National Olympiad, P6

Consider a nonconstant arithmetic progression $a_1, a_2,\cdots, a_n,\cdots$. Suppose there exist relatively prime positive integers $p>1$ and $q>1$ such that $a_1^2, a_{p+1}^2$ and $a_{q+1}^2$ are also the terms of the same arithmetic progression. Prove that the terms of the arithmetic progression are all integers.

2012 Benelux, 1

A sequence $a_1,a_2,\ldots ,a_n,\ldots$ of natural numbers is defined by the rule \[a_{n+1}=a_n+b_n\ (n=1,2,\ldots)\] where $b_n$ is the last digit of $a_n$. Prove that such a sequence contains infinitely many powers of $2$ if and only if $a_1$ is not divisible by $5$.

1998 VJIMC, Problem 2

Decide whether there is a member in the arithmetic sequence $\{a_n\}_{n=1}^\infty$ whose first member is $a_1=1998$ and the common difference $d=131$ which is a palindrome (palindrome is a number such that its decimal expansion is symmetric, e.g., $7$, $33$, $433334$, $2135312$ and so on).