This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

2021 Taiwan TST Round 2, 5

Let $\|x\|_*=(|x|+|x-1|-1)/2$. Find all $f:\mathbb{N}\to\mathbb{N}$ such that \[f^{(\|f(x)-x\|_*)}(x)=x, \quad\forall x\in\mathbb{N}.\] Here $f^{(0)}(x)=x$ and $f^{(n)}(x)=f(f^{(n-1)}(x))$ for all $n\in\mathbb{N}$. [i]Proposed by usjl[/i]

2015 IMO Shortlist, C5

The sequence $a_1,a_2,\dots$ of integers satisfies the conditions: (i) $1\le a_j\le2015$ for all $j\ge1$, (ii) $k+a_k\neq \ell+a_\ell$ for all $1\le k<\ell$. Prove that there exist two positive integers $b$ and $N$ for which\[\left\vert\sum_{j=m+1}^n(a_j-b)\right\vert\le1007^2\]for all integers $m$ and $n$ such that $n>m\ge N$. [i]Proposed by Ivan Guo and Ross Atkins, Australia[/i]

2023 Olympic Revenge, 1

Find all $f:\mathbb{R}\rightarrow \mathbb{R}$ continuous functions such that $\lim_{x\rightarrow \infty} f(x) =\infty$ and $\forall x,y\in \mathbb{R}, |x-y|>\varphi, \exists n<\varphi^{2023}, n\in \mathbb{N}$ such that $$f^n(x)+f^n(y)=x+y$$

2016 Peru IMO TST, 13

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f}_{n}(m)\ldots))$. Suppose that $f$ has the following two properties: (i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m) - m}{n} \in \mathbb{Z}_{>0}$; (ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n\in \mathbb{Z}_{>0}\}$ is finite. Prove that the sequence $f(1) - 1, f(2) - 2, f(3) - 3, \ldots$ is periodic. [i]Proposed by Ang Jie Jun, Singapore[/i]

2013 USA Team Selection Test, 4

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let $f^m$ be $f$ applied $m$ times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2k}(n)=n+k$, and let $k_n$ be the smallest such $k$. Prove that the sequence $k_1,k_2,\ldots $ is unbounded. [i]Proposed by Palmer Mebane, United States[/i]

2012 IMO Shortlist, A6

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let $f^m$ be $f$ applied $m$ times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2k}(n)=n+k$, and let $k_n$ be the smallest such $k$. Prove that the sequence $k_1,k_2,\ldots $ is unbounded. [i]Proposed by Palmer Mebane, United States[/i]

2015 IMO Shortlist, N6

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f}_{n}(m)\ldots))$. Suppose that $f$ has the following two properties: (i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m) - m}{n} \in \mathbb{Z}_{>0}$; (ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n\in \mathbb{Z}_{>0}\}$ is finite. Prove that the sequence $f(1) - 1, f(2) - 2, f(3) - 3, \ldots$ is periodic. [i]Proposed by Ang Jie Jun, Singapore[/i]

2015 SG Originals, N6

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f}_{n}(m)\ldots))$. Suppose that $f$ has the following two properties: (i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m) - m}{n} \in \mathbb{Z}_{>0}$; (ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n\in \mathbb{Z}_{>0}\}$ is finite. Prove that the sequence $f(1) - 1, f(2) - 2, f(3) - 3, \ldots$ is periodic. [i]Proposed by Ang Jie Jun, Singapore[/i]

2015 IMO, 6

The sequence $a_1,a_2,\dots$ of integers satisfies the conditions: (i) $1\le a_j\le2015$ for all $j\ge1$, (ii) $k+a_k\neq \ell+a_\ell$ for all $1\le k<\ell$. Prove that there exist two positive integers $b$ and $N$ for which\[\left\vert\sum_{j=m+1}^n(a_j-b)\right\vert\le1007^2\]for all integers $m$ and $n$ such that $n>m\ge N$. [i]Proposed by Ivan Guo and Ross Atkins, Australia[/i]