This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2018 Ramnicean Hope, 3

[b]a)[/b] Let $ u $ be a polynom in $ \mathbb{Q}[X] . $ Prove that the function $ E_u:\mathbb{Q}[X]\longrightarrow\mathbb{Q}[X] $ defined as $ E_u(P)=P(u) $ is an endomorphism. [b]b)[/b] Let $ E $ be an injective endomorphism of $ \mathbb{Q} [X] . $ Show that there exists a nonconstant polynom $ v $ in $ \mathbb{Q}[X] $ such that $ E(P)=P(v) , $ for any $ P $ in $ \mathbb{Q}[X] . $ [b]c)[/b] Let $ A $ be an automorphism of $ \mathbb{Q}[X] . $ Demonstrate that there is a nonzero constant polynom $ w $ in $ \mathbb{Q}[X] $ which has the property that $ A(P)=P(w) , $ for any $ P $ in $ \mathbb{Q}[X] . $ [i]Marcel Țena[/i]

1985 Traian Lălescu, 2.3

Let $ 0\neq\varrho\in\text{Hom}\left( \mathbb{Z}_4,\mathbb{Z}_2\right) ,$ $ \text{id}\neq\iota\in\text{Aut}\left( \mathbb{Z}_4\right) ,$ $ G:=\left\{ (x,y)\in\mathbb{Z}_4^2\big|x-y\in\ker\varrho\right\} , $ and $ \rho_1,\rho_2, $ the canonic projections of $ G $ into $ \mathbb{Z}_4. $ Prove that there exists an unique $ \nu\in\text{Hom}\left( \mathbb{Z}_4,G\right) $ such that $ \rho_1\circ\nu=\text{id} $ and $ \rho_2\circ\nu =\iota . $ Determine numerically this morphism.