This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2017 Azerbaijan Junior National Olympiad, P3

Show that $\frac{(x + y + z)^2}{3} \ge x\sqrt{yz} + y\sqrt{zx} + z\sqrt{xy}$ for all non-negative reals $x, y, z$.

1991 All Soviet Union Mathematical Olympiad, 543

Show that $\frac{(x + y + z)^2}{3} \ge x\sqrt{yz} + y\sqrt{zx} + z\sqrt{xy}$ for all non-negative reals $x, y, z$.