This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1983 Czech and Slovak Olympiad III A, 4

Consider an arithmetic progression $a_0,\ldots,a_n$ with $n\ge2$. Prove that $$\sum_{k=0}^n(-1)^k\binom{n}{k}a_k=0.$$

1975 IMO Shortlist, 7

Prove that from $x + y = 1 \ (x, y \in \mathbb R)$ it follows that \[x^{m+1} \sum_{j=0}^n \binom{m+j}{j} y^j + y^{n+1} \sum_{i=0}^m \binom{n+i}{i} x^i = 1 \qquad (m, n = 0, 1, 2, \ldots ).\]