This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2005 China Team Selection Test, 3

$n$ is a positive integer, $F_n=2^{2^{n}}+1$. Prove that for $n \geq 3$, there exists a prime factor of $F_n$ which is larger than $2^{n+2}(n+1)$.

2005 China Team Selection Test, 3

$n$ is a positive integer, $F_n=2^{2^{n}}+1$. Prove that for $n \geq 3$, there exists a prime factor of $F_n$ which is larger than $2^{n+2}(n+1)$.