This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2007 IMO Shortlist, 5

Let $ c > 2,$ and let $ a(1), a(2), \ldots$ be a sequence of nonnegative real numbers such that \[ a(m \plus{} n) \leq 2 \cdot a(m) \plus{} 2 \cdot a(n) \text{ for all } m,n \geq 1, \] and $ a\left(2^k \right) \leq \frac {1}{(k \plus{} 1)^c} \text{ for all } k \geq 0.$ Prove that the sequence $ a(n)$ is bounded. [i]Author: Vjekoslav Kovač, Croatia[/i]